In mathematics, p-adic Hodge theory is a theory that provides a way to classify and study p-adic Galois representations of characteristic 0 local fields [1] with residual characteristic p (such as Qp). The theory has its beginnings in Jean-Pierre Serre and John Tate's study of Tate modules of abelian varieties and the notion of Hodge–Tate representation. Hodge–Tate representations are related to certain decompositions of p-adic cohomology theories analogous to the Hodge decomposition, hence the name p-adic Hodge theory. Further developments were inspired by properties of p-adic Galois representations arising from the étale cohomology of varieties. Jean-Marc Fontaine introduced many of the basic concepts of the field.
Let be a local field with residue field of characteristic . In this article, a -adic representation of (or of , the absolute Galois group of ) will be a continuous representation , where is a finite-dimensional vector space over . The collection of all -adic representations of form an abelian category denoted in this article. -adic Hodge theory provides subcollections of -adic representations based on how nice they are, and also provides faithful functors to categories of linear algebraic objects that are easier to study. The basic classification is as follows: [2]
where each collection is a full subcategory properly contained in the next. In order, these are the categories of crystalline representations, semistable representations, de Rham representations, Hodge–Tate representations, and all p-adic representations. In addition, two other categories of representations can be introduced, the potentially crystalline representations and the potentially semistable representations . The latter strictly contains the former which in turn generally strictly contains ; additionally, generally strictly contains , and is contained in (with equality when the residue field of is finite, a statement called the p-adic monodromy theorem).
The general strategy of p-adic Hodge theory, introduced by Fontaine, is to construct certain so-called period rings [3] such as BdR, Bst, Bcris, and BHT which have both an action by GK and some linear algebraic structure and to consider so-called Dieudonné modules
(where B is a period ring, and V is a p-adic representation) which no longer have a GK-action, but are endowed with linear algebraic structures inherited from the ring B. In particular, they are vector spaces over the fixed field . [4] This construction fits into the formalism of B-admissible representations introduced by Fontaine. For a period ring like the aforementioned ones B∗ (for ∗ = HT, dR, st, cris), the category of p-adic representations Rep∗(K) mentioned above is the category of B∗-admissible ones, i.e. those p-adic representations V for which
or, equivalently, the comparison morphism
is an isomorphism.
This formalism (and the name period ring) grew out of a few results and conjectures regarding comparison isomorphisms in arithmetic and complex geometry:
To improve the Hodge–Tate conjecture to one involving the de Rham cohomology (not just its associated graded), Fontaine constructed [8] a filtered ring BdR whose associated graded is BHT and conjectured [9] the following (called CdR) for any smooth proper scheme X over K
as filtered vector spaces with GK-action. In this way, BdR could be said to contain all (p-adic) periods required to compare algebraic de Rham cohomology with p-adic étale cohomology, just as the complex numbers above were used with the comparison with singular cohomology. This is where BdR obtains its name of ring of p-adic periods.
Similarly, to formulate a conjecture explaining Grothendieck's mysterious functor, Fontaine introduced a ring Bcris with GK-action, a "Frobenius" φ, and a filtration after extending scalars from K0 to K. He conjectured [10] the following (called Ccris) for any smooth proper scheme X over K with good reduction
as vector spaces with φ-action, GK-action, and filtration after extending scalars to K (here is given its structure as a K0-vector space with φ-action given by its comparison with crystalline cohomology). Both the CdR and the Ccris conjectures were proved by Faltings. [11]
Upon comparing these two conjectures with the notion of B∗-admissible representations above, it is seen that if X is a proper smooth scheme over K (with good reduction) and V is the p-adic Galois representation obtained as is its ith p-adic étale cohomology group, then
In other words, the Dieudonné modules should be thought of as giving the other cohomologies related to V.
In the late eighties, Fontaine and Uwe Jannsen formulated another comparison isomorphism conjecture, Cst, this time allowing X to have semi-stable reduction. Fontaine constructed [12] a ring Bst with GK-action, a "Frobenius" φ, a filtration after extending scalars from K0 to K (and fixing an extension of the p-adic logarithm), and a "monodromy operator" N. When X has semi-stable reduction, the de Rham cohomology can be equipped with the φ-action and a monodromy operator by its comparison with the log-crystalline cohomology first introduced by Osamu Hyodo. [13] The conjecture then states that
as vector spaces with φ-action, GK-action, filtration after extending scalars to K, and monodromy operator N. This conjecture was proved in the late nineties by Takeshi Tsuji. [14]
In mathematics, the Hodge conjecture is a major unsolved problem in algebraic geometry and complex geometry that relates the algebraic topology of a non-singular complex algebraic variety to its subvarieties.
In algebraic geometry, a branch of mathematics, Serre duality is a duality for the coherent sheaf cohomology of algebraic varieties, proved by Jean-Pierre Serre. The basic version applies to vector bundles on a smooth projective variety, but Alexander Grothendieck found wide generalizations, for example to singular varieties. On an n-dimensional variety, the theorem says that a cohomology group is the dual space of another one, . Serre duality is the analog for coherent sheaf cohomology of Poincaré duality in topology, with the canonical line bundle replacing the orientation sheaf.
In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.
In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.
In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations. The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic.
In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.
In algebraic geometry, a Weil cohomology or Weil cohomology theory is a cohomology satisfying certain axioms concerning the interplay of algebraic cycles and cohomology groups. The name is in honor of André Weil. Any Weil cohomology theory factors uniquely through the category of Chow motives, but the category of Chow motives itself is not a Weil cohomology theory, since it is not an abelian category.
In mathematics, a Tate module of an abelian group, named for John Tate, is a module constructed from an abelian group A. Often, this construction is made in the following situation: G is a commutative group scheme over a field K, Ks is the separable closure of K, and A = G(Ks). In this case, the Tate module of A is equipped with an action of the absolute Galois group of K, and it is referred to as the Tate module of G.
In number theory and algebraic geometry, the Tate conjecture is a 1963 conjecture of John Tate that would describe the algebraic cycles on a variety in terms of a more computable invariant, the Galois representation on étale cohomology. The conjecture is a central problem in the theory of algebraic cycles. It can be considered an arithmetic analog of the Hodge conjecture.
In algebraic geometry, the Chow groups of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general.
In mathematics, crystalline cohomology is a Weil cohomology theory for schemes X over a base field k. Its values Hn(X/W) are modules over the ring W of Witt vectors over k. It was introduced by Alexander Grothendieck (1966, 1968) and developed by Pierre Berthelot (1974).
In mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. Hodge structures have been generalized for all complex varieties in the form of mixed Hodge structures, defined by Pierre Deligne (1970). A variation of Hodge structure is a family of Hodge structures parameterized by a manifold, first studied by Phillip Griffiths (1968). All these concepts were further generalized to mixed Hodge modules over complex varieties by Morihiko Saito (1989).
In mathematics, Hochschild homology (and cohomology) is a homology theory for associative algebras over rings. There is also a theory for Hochschild homology of certain functors. Hochschild cohomology was introduced by Gerhard Hochschild (1945) for algebras over a field, and extended to algebras over more general rings by Henri Cartan and Samuel Eilenberg (1956).
In number theory, a cyclotomic character is a character of a Galois group giving the Galois action on a group of roots of unity. As a one-dimensional representation over a ring R, its representation space is generally denoted by R(1) (that is, it is a representation χ : G → AutR(R(1)) ≈ GL(1, R)).
Pierre Colmez is a French mathematician and directeur de recherche at the CNRS (IMJ-PRG) known for his work in number theory and p-adic analysis.
In mathematics, the Fontaine–Mazur conjectures are some conjectures introduced by Fontaine and Mazur about when p-adic representations of Galois groups of number fields can be constructed from representations on étale cohomology groups of varieties. Some cases of this conjecture in dimension 2 have been proved by Dieulefait (2004).
In algebraic geometry, a log structure provides an abstract context to study semistable schemes, and in particular the notion of logarithmic differential form and the related Hodge-theoretic concepts. This idea has applications in the theory of moduli spaces, in deformation theory and Fontaine's p-adic Hodge theory, among others.
In algebraic geometry and differential geometry, the nonabelian Hodge correspondence or Corlette–Simpson correspondence is a correspondence between Higgs bundles and representations of the fundamental group of a smooth, projective complex algebraic variety, or a compact Kähler manifold.
Wiesława Krystyna Nizioł is a Polish mathematician, director of research at CNRS, based at Institut mathématique de Jussieu. Her research concerns arithmetic geometry, and in particular p-adic Hodge theory, Galois representations, and p-adic cohomology.
In algebraic geometry, an ℓ-adic sheaf on a Noetherian scheme X is an inverse system consisting of -modules in the étale topology and inducing .
{{citation}}
: CS1 maint: location missing publisher (link)