PARL

Last updated
PARL
Identifiers
Aliases PARL , PSARL, PSARL1, PSENIP2, RHBDS1, PRO2207, presenilin associated rhomboid like
External IDs OMIM: 607858 MGI: 1277152 HomoloGene: 10239 GeneCards: PARL
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001005767

RefSeq (protein)

NP_001032728
NP_001311365
NP_001311366
NP_001311367
NP_061092

Contents

NP_001005767

Location (UCSC) Chr 3: 183.83 – 183.88 Mb Chr 16: 20.1 – 20.12 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Presenilins-associated rhomboid-like protein, mitochondrial (PSARL), [5] also known as PINK1/PGAM5-associated rhomboid-like protease (PARL), [6] is an inner mitochondrial membrane protein that in humans is encoded by the PARL gene on chromosome 3. [7] It is a member of the rhomboid family of intramembrane serine proteases. [8] This protein is involved in signal transduction and apoptosis, as well as neurodegenerative diseases and type 2 diabetes. [7] [9]

Structure

Rhomboid family members share a conserved core of six transmembrane helices (TMHs), with the Ser and His residues required to form the catalytic dyad embedded in TMH-4 and TMH-6, respectively. This dyad is found deep below the membrane surface, which indicates that the hydrolysis of peptide bonds occurs within the hydrophobic phospholipid bilayer membrane. As a member of the Parl subfamily, PARL has an additional N-terminal TMH which may form a loop to the catalytic core. [10]

Function

This gene encodes a mitochondrial integral membrane protein. Following proteolytic processing of this protein, a small peptide (P-beta) is formed and translocated to the nucleus. This gene may be involved in signal transduction via regulated intramembrane proteolysis of membrane-tethered precursor proteins. Variation in this gene has been associated with increased risk for type 2 diabetes. Alternative splicing results in multiple transcript variants encoding different isoforms. [7]

Additionally, PARL is involved in apoptosis through its interactions with the mitochondrial GTPase optic atrophy 1 (OPA1) and the Bcl-2 family-related protein HAX1. OPA1 mainly regulates mitochondrial fusion in the mitochondrial inner membrane, but after proteolytic cleavage by PARL, its short, soluble form contributes to inhibiting apoptosis by slowing down cytochrome c release, and thus, proapoptotic signaling. Alternatively, PARL can inhibit apoptosis by coordinating with HAX1 to activate HtrA2 protease, thus preventing the accumulation of the proapoptotic Bax. [9]

Clinical significance

It has been shown that the p.S77N presenilin-associated rhomboid-like protein mutation is not a frequent cause of early-onset Parkinson's disease. [11] Variation in the sequence and/or expression of the gene encoding presenilins-associated rhomboid-like protein (PSARL) may be an important new risk factor for type 2 diabetes and other components of the metabolic syndrome. [12] Mutations in PARL may also be involved in Leber hereditary optic neuropathy by disrupting normal function of the mitochondria, thus promoting retinal ganglion cell death and neurodegeneration. [9]

Interactions

PARL has been shown to interact with:

Related Research Articles

In molecular biology, the Signal Peptide Peptidase (SPP) is a type of protein that specifically cleaves parts of other proteins. It is an intramembrane aspartyl protease with the conserved active site motifs 'YD' and 'GxGD' in adjacent transmembrane domains (TMDs). Its sequences is highly conserved in different vertebrate species. SPP cleaves remnant signal peptides left behind in membrane by the action of signal peptidase and also plays key roles in immune surveillance and the maturation of certain viral proteins.

<span class="mw-page-title-main">Gamma secretase</span>

Gamma secretase is a multi-subunit protease complex, itself an integral membrane protein, that cleaves single-pass transmembrane proteins at residues within the transmembrane domain. Proteases of this type are known as intramembrane proteases. The most well-known substrate of gamma secretase is amyloid precursor protein, a large integral membrane protein that, when cleaved by both gamma and beta secretase, produces a short 37-43 amino acid peptide called amyloid beta whose abnormally folded fibrillar form is the primary component of amyloid plaques found in the brains of Alzheimer's disease patients. Gamma secretase is also critical in the related processing of several other type I integral membrane proteins, such as Notch, ErbB4, E-cadherin, N-cadherin, ephrin-B2, or CD44.

<span class="mw-page-title-main">Presenilin</span>

Presenilins are a family of related multi-pass transmembrane proteins which constitute the catalytic subunits of the gamma-secretase intramembrane protease protein complex. They were first identified in screens for mutations causing early onset forms of familial Alzheimer's disease by Peter St George-Hyslop. Vertebrates have two presenilin genes, called PSEN1 that codes for presenilin 1 (PS-1) and PSEN2 that codes for presenilin 2 (PS-2). Both genes show conservation between species, with little difference between rat and human presenilins. The nematode worm C. elegans has two genes that resemble the presenilins and appear to be functionally similar, sel-12 and hop-1.

<span class="mw-page-title-main">Presenilin-1</span> Protein-coding gene in the species Homo sapiens

Presenilin-1(PS-1) is a presenilin protein that in humans is encoded by the PSEN1 gene. Presenilin-1 is one of the four core proteins in the gamma secretase complex, which is considered to play an important role in generation of amyloid beta (Aβ) from amyloid-beta precursor protein (APP). Accumulation of amyloid beta is associated with the onset of Alzheimer's disease.

<span class="mw-page-title-main">Caspase 6</span> Protein-coding gene in the species Homo sapiens

Caspase-6 is an enzyme that in humans is encoded by the CASP6 gene. CASP6 orthologs have been identified in numerous mammals for which complete genome data are available. Unique orthologs are also present in birds, lizards, lissamphibians, and teleosts. Caspase-6 has known functions in apoptosis, early immune response and neurodegeneration in Huntington's and Alzheimer's disease.

<span class="mw-page-title-main">PSEN2</span> Protein-coding gene in the species Homo sapiens

Presenilin-2 is a protein that is encoded by the PSEN2 gene.

<span class="mw-page-title-main">Dynamin-like 120 kDa protein</span> Protein-coding gene in the species Homo sapiens

Dynamin-like 120 kDa protein, mitochondrial is a protein that in humans is encoded by the OPA1 gene. This protein regulates mitochondrial fusion and cristae structure in the inner mitochondrial membrane (IMM) and contributes to ATP synthesis and apoptosis, and small, round mitochondria. Mutations in this gene have been implicated in dominant optic atrophy (DOA), leading to loss in vision, hearing, muscle contraction, and related dysfunctions.

<span class="mw-page-title-main">HtrA serine peptidase 2</span> Enzyme found in humans

Serine protease HTRA2, mitochondrial is an enzyme that in humans is encoded by the HTRA2 gene. This protein is involved in caspase-dependent apoptosis and in Parkinson's disease.

<span class="mw-page-title-main">HM13</span> Protein-coding gene in the species Homo sapiens

Minor histocompatibility antigen H13 is a protein that in humans is encoded by the HM13 gene.

<span class="mw-page-title-main">FIS1</span> Protein-coding gene in the species Homo sapiens

Mitochondrial fission 1 protein (FIS1) is a protein that in humans is encoded by the FIS1 gene on chromosome 7. This protein is a component of a mitochondrial complex, the ARCosome, that promotes mitochondrial fission. Its role in mitochondrial fission thus implicates it in the regulation of mitochondrial morphology, the cell cycle, and apoptosis. By extension, the protein is involved in associated diseases, including neurodegenerative diseases and cancers.

<span class="mw-page-title-main">SPPL2B</span> Protein-coding gene in the species Homo sapiens

Signal peptide peptidase-like 2B, also known as SPPL2B, is a human gene.

<span class="mw-page-title-main">SPPL2A</span> Protein-coding gene in the species Homo sapiens

Signal peptide peptidase-like 2A, also known as SPPL2A, is a human gene.

<span class="mw-page-title-main">MTCH1</span> Protein-coding gene in the species Homo sapiens

Mitochondrial carrier homolog 1 (MTCH1), also referred to as presenilin 1-associated protein (PSAP), is a protein that in humans is encoded by the MTCH1 gene on chromosome 6. MTCH1 is a proapoptotic mitochondrial protein potentially involved in Alzheimer’s disease (AD).

<span class="mw-page-title-main">YME1L1</span> Protein-coding gene in the species Homo sapiens

ATP-dependent metalloprotease YME1L1 is an enzyme that in humans is encoded by the YME1L1 gene. YME1L1 belongs to the AAA family of ATPases and mainly functions in the maintenance of mitochondrial morphology. Mutations in this gene would cause infantile-onset mitochondriopathy.

Howel–Evans syndrome is an extremely rare condition involving thickening of the skin in the palms of the hands and the soles of the feet (hyperkeratosis). This familial disease is associated with a high lifetime risk of esophageal cancer. For this reason, it is sometimes known as tylosis with oesophageal cancer (TOC).

<span class="mw-page-title-main">Rhomboid protease</span>

The rhomboid proteases are a family of enzymes that exist in almost all species. They are proteases: they cut the polypeptide chain of other proteins. This proteolytic cleavage is irreversible in cells, and an important type of cellular regulation. Although proteases are one of the earliest and best studied class of enzyme, rhomboids belong to a much more recently discovered type: the intramembrane proteases. What is unique about intramembrane proteases is that their active sites are buried in the lipid bilayer of cell membranes, and they cleave other transmembrane proteins within their transmembrane domains. About 30% of all proteins have transmembrane domains, and their regulated processing often has major biological consequences. Accordingly, rhomboids regulate many important cellular processes, and may be involved in a wide range of human diseases.

Intramembrane proteases (IMPs), also known as intramembrane-cleaving proteases (I-CLiPs), are enzymes that have the property of cleaving transmembrane domains of integral membrane proteins. All known intramembrane proteases are themselves integral membrane proteins with multiple transmembrane domains, and they have their active sites buried within the lipid bilayer of cellular membranes. Intramembrane proteases are responsible for proteolytic cleavage in the cell signaling process known as regulated intramembrane proteolysis (RIP).

<span class="mw-page-title-main">Rhomboid-related protein 2</span> Protein-coding gene in the species Homo sapiens

Rhomboid-related protein 2 is a protein that in humans is encoded by the RHBDL2 gene.

<span class="mw-page-title-main">OMA1</span> Protein-coding gene in the species Homo sapiens

Metalloendopeptidase OMA1, mitochondrial is an enzyme that in humans is encoded by the OMA1 gene. OMA1 is a Zn2+-dependent metalloendopeptidase in the inner membrane of mitochondria. The OMA1 acronym was derived from overlapping proteolytic activity with m-AAA protease 1.

<span class="mw-page-title-main">Glucokinase regulator</span> Protein-coding gene in the species Homo sapiens

Glucokinase regulator is a protein that in humans is encoded by the GCKR gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000175193 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000033918 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Q9H300 · PARL_HUMAN". UniProt. UniProt consortium. Retrieved 8 August 2023.
  6. Siebert V, Silber M, Heuten E, Muhle-Goll C, Lemberg MK (2022). "Cleavage of mitochondrial homeostasis regulator PGAM5 by the intramembrane protease PARL is governed by transmembrane helix dynamics and oligomeric state". Journal of Biological Chemistry. 298 (9). doi: 10.1016/j.jbc.2022.102321 . PMC   9436811 . PMID   35921890. 102321.
  7. 1 2 3 "Entrez Gene: PARL presenilin associated, rhomboid-like".
  8. McQuibban GA, Saurya S, Freeman M (2003). "Mitochondrial membrane remodelling regulated by a conserved rhomboid protease". Nature. 423 (6939): 537–541. Bibcode:2003Natur.423..537M. doi: 10.1038/nature01633 . PMID   12774122.
  9. 1 2 3 4 5 Phasukkijwatana N, Kunhapan B, Stankovich J, Chuenkongkaew WL, Thomson R, Thornton T, Bahlo M, Mushiroda T, Nakamura Y, Mahasirimongkol S, Tun AW, Srisawat C, Limwongse C, Peerapittayamongkol C, Sura T, Suthammarak W, Lertrit P (Jul 2010). "Genome-wide linkage scan and association study of PARL to the expression of LHON families in Thailand". Human Genetics. 128 (1): 39–49. doi:10.1007/s00439-010-0821-8. PMID   20407791. S2CID   394164.
  10. Pellegrini L, Scorrano L (Jul 2007). "A cut short to death: Parl and Opa1 in the regulation of mitochondrial morphology and apoptosis". Cell Death and Differentiation. 14 (7): 1275–84. doi: 10.1038/sj.cdd.4402145 . PMID   17464328.
  11. Heinitz S, Klein C, Djarmati A (Nov 2011). "The p.S77N presenilin-associated rhomboid-like protein mutation is not a frequent cause of early-onset Parkinson's disease". Movement Disorders . 26 (13): 2441–2. doi:10.1002/mds.23889. PMID   21953724. S2CID   45301679.
  12. Walder K, Kerr-Bayles L, Civitarese A, Jowett J, Curran J, Elliott K, Trevaskis J, Bishara N, Zimmet P, Mandarino L, Ravussin E, Blangero J, Kissebah A, Collier GR (Mar 2005). "The mitochondrial rhomboid protease PSARL is a new candidate gene for type 2 diabetes". Diabetologia . 48 (3): 459–68. doi: 10.1007/s00125-005-1675-9 . hdl: 10536/DRO/DU:30003156 . PMID   15729572.
  13. Shi G, Lee JR, Grimes DA, Racacho L, Ye D, Yang H, Ross OA, Farrer M, McQuibban GA, Bulman DE (May 2011). "Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson's disease". Human Molecular Genetics. 20 (10): 1966–74. doi:10.1093/hmg/ddr077. PMID   21355049.

Further reading