PHBV

Last updated
PHBV
PHBVpolymerstructure.svg
Names
Other names
Poly(β-hydroxybutyrate-β-hydroxyvalerate)
Poly(3-hydroxybutyric acid-co-β-hydroxyvaleric acid)
Biopol P(3HB-3HV)
Identifiers
  • 80181-31-3
3D model (JSmol)
AbbreviationsPHBV
P(3HB-co-3HV)
ChemSpider
ECHA InfoCard 100.125.321 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
  • InChI=1S/C5H10O3.C4H8O3/c1-2-4(6)3-5(7)8;1-3(5)2-4(6)7/h4,6H,2-3H2,1H3, (H,7,8);3,5H,2H2,1H3,(H,6,7)
    Key: IUPHTVOTTBREAV-UHFFFAOYSA-N
  • CCC(CC(=O)O)O.CC(CC(=O)O)O
Properties
[COCH2CH(CH3)O]m[COCH2CH(C2H5)O]n [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), commonly known as PHBV, is a polyhydroxyalkanoate-type polymer. It is biodegradable, nontoxic, biocompatible plastic produced naturally by bacteria and a good alternative for many non-biodegradable synthetic polymers. It is a thermoplastic linear aliphatic polyester. It is obtained by the copolymerization of 3-hydroxybutanoic acid and 3-hydroxypentanoic acid. PHBV is used in speciality packaging, orthopedic devices and in controlled release of drugs. PHBV undergoes bacterial degradation in the environment.

Contents

History

PHBV was first manufactured in 1983 by Imperial Chemical Industries (ICI). It is commercialized under the trade name Biopol. ICI (Zeneca) sold it to Monsanto in 1996. This was then obtained by Metabolix in 2001. [2] [3] Biomer L is the trade name of PHBV from Biomer.

Synthesis

PHBV is synthesized by bacteria as storage compounds under growth limiting conditions. [4] It can be produced from glucose and propionate by the recombinant Escherichia coli strains. [2] Many other bacteria like Paracoccus denitrificans and Ralstonia eutropha are also capable of producing it.

It can also be synthesized from genetically engineered plants. [5]

PHBV is a copolymer of 3-hydroxybutanoic acid and 3-hydroxypentanoic acid. [6] PHBV may also be synthesized from butyrolactone and valerolactone in the presence of oligomeric aluminoxane as catalyst. [7]

Structure

The monomers, 3-hydroxybutanoic acid and 3-hydroxypentanoic acid, are joined by ester bonds; the back bone of the polymer is made up of carbon and oxygen atoms. The property of the PHBV depends upon the ratio of these two monomers in it. 3-hydroxybutanoic acid provides stiffness while 3-hydroxypentanoic acid promotes flexibility. Thus PHBV can be made to resemble either polypropylene or polyethylene by changing the ratio of monomers. [8] Increase in the ratio of 3-hydroxybutanoic acid to 3-hydroxypentanoic acid results in an increase in melting point, water permeability, glass transition temperature (Tg) and tensile strength. However impact resistance is reduced. [3] [5] [7]

Properties

PHBV is a thermoplastic polymer. It is brittle, has low elongation at break and low impact resistance. [5]

Uses

PHBV find its application in controlled release of drugs, medical implants and repairs, specialty packaging, orthopedic devices and manufacturing bottles for costumers goods. It is also biodegradable which can be used as an alternative to non biodegradable plastics [9]

Degradation

When disposed, PHBV degrades into carbon dioxide and water. PHBV undergo bacterial degradation. PHBV, just like fats to human, is an energy source to microorganisms. Enzymes produced by them degrade it and are consumed. [10]

PHBV has a low thermal stability and the cleavage occurs at the ester bond by β elimination reaction. [5]

Hydrolytic degradation occurs only slowly making it usable in medical applications.

Drawbacks

PHBV, being biodegradable, biocompatible and renewable, is a good alternative for synthetic nonbiodegradable polymers made from petroleum. But it has the following drawbacks, [5]

See also

Related Research Articles

Biopolymer Polymer produced by a living organism

Biopolymers are natural polymers produced by the cells of living organisms. Biopolymers consist of monomeric units that are covalently bonded to form larger molecules. There are three main classes of biopolymers, classified according to the monomers used and the structure of the biopolymer formed: polynucleotides, polypeptides, and polysaccharides. Polynucleotides, such as RNA and DNA, are long polymers composed of 13 or more nucleotide monomers. Polypeptides and proteins, are polymers of amino acids and some major examples include collagen, actin, and fibrin. Polysaccharides are linear or branched polymeric carbohydrates and examples include starch, cellulose and alginate. Other examples of biopolymers include natural rubbers, suberin and lignin, cutin and cutan and melanin.

Polyethylene Most common thermoplastic polymer

Polyethylene or (incorrectly) polythene is the most common plastic in use today. It is a polymer, primarily used for packaging. As of 2017, over 100 million tonnes of polyethylene resins are being produced annually, accounting for 34% of the total plastics market.

Thermoplastic Plastic that becomes soft when heated and hard when cooled

A thermoplastic, or thermosoft plastic, is a plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling.

Polymer degradation Alteration in the polymer properties under the influence of environmental factors

Polymer degradation is the reduction in the physical properties of a polymer, such as strength, caused by changes in its chemical composition. Polymers and particularly plastics are subject to degradation at all stages of their product life cycle, including during their production, use, disposal into the environment and recycling. The rate of this degradation varies significantly; biodegradation can take decades, whereas some industrial processes can completely decompose a polymer in hours.

Polyhydroxybutyrate

Polyhydroxybutyrate (PHB) is a polyhydroxyalkanoate (PHA), a polymer belonging to the polyesters class that are of interest as bio-derived and biodegradable plastics. The poly-3-hydroxybutyrate (P3HB) form of PHB is probably the most common type of polyhydroxyalkanoate, but other polymers of this class are produced by a variety of organisms: these include poly-4-hydroxybutyrate (P4HB), polyhydroxyvalerate (PHV), polyhydroxyhexanoate (PHH), polyhydroxyoctanoate (PHO) and their copolymers.

Polyhydroxyalkanoates polyester family

Polyhydroxyalkanoates or PHAs are polyesters produced in nature by numerous microorganisms, including through bacterial fermentation of sugars or lipids. When produced by bacteria they serve as both a source of energy and as a carbon store. More than 150 different monomers can be combined within this family to give materials with extremely different properties. These plastics are biodegradable and are used in the production of bioplastics.

PLGA Copolymer of varying ratios of polylactic acid and polyglycolic acid

PLGA, PLG, or poly(lactic-co-glycolic acid) is a copolymer which is used in a host of Food and Drug Administration (FDA) approved therapeutic devices, owing to its biodegradability and biocompatibility. PLGA is synthesized by means of ring-opening co-polymerization of two different monomers, the cyclic dimers (1,4-dioxane-2,5-diones) of glycolic acid and lactic acid. Polymers can be synthesized as either random or block copolymers thereby imparting additional polymer properties. Common catalysts used in the preparation of this polymer include tin(II) 2-ethylhexanoate, tin(II) alkoxides, or aluminum isopropoxide. During polymerization, successive monomeric units are linked together in PLGA by ester linkages, thus yielding a linear, aliphatic polyester as a product.

Polylactic acid Biodegradable polymer

Polylactic acid, also known as poly(lactic acid) or polylactide is a thermoplastic polyester with backbone formula (C
3
H
4
O
2
)
n
or [–C(CH
3
)HC(=O)O–]
n
, formally obtained by condensation of lactic acid C(CH
3
)(OH)HCOOH
with loss of water. It can also be prepared by ring-opening polymerization of lactide [–C(CH
3
)HC(=O)O–]
2
, the cyclic dimer of the basic repeating unit.

Bioplastics are plastic materials produced from renewable biomass sources, such as vegetable fats and oils, corn starch, straw, woodchips, sawdust, recycled food waste, etc. Some bioplastics are obtained by processing directly from natural biopolymers including polysaccharides and proteins, while others are chemically synthesised from sugar derivatives and lipids from either plants or animals, or biologically generated by fermentation of sugars or lipids. In contrast, common plastics, such as fossil-fuel plastics are derived from petroleum or natural gas.

Polyester Category of polymers, in which the monomers are joined together by ester links.

Polyester is a category of polymers that contain the ester functional group in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, in plants and insects, as well as synthetics such as polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. Synthetic polyesters are used extensively in clothing.

Biodegradable plastic Plastics that can be decomposed by the action of living organisms

Biodegradable plastics are plastics that can be decomposed by the action of living organisms, usually microbes, into water, carbon dioxide, and biomass. Biodegradable plastics are commonly produced with renewable raw materials, micro-organisms, petrochemicals, or combinations of all three.

PBAT is a biodegradable random copolymer, specifically a copolyester of adipic acid, 1,4-butanediol and terephthalic acid. PBAT is produced by many different manufacturers and may be known by the brand names ecoflex, Wango,Ecoworld, Eastar Bio, and Origo-Bi. It is also called poly(butylene adipate-co-terephthalate) and sometimes polybutyrate-adipate-terephthalate or even just "polybutyrate". It is generally marketed as a fully biodegradable alternative to low-density polyethylene, having many similar properties including flexibility and resilience, allowing it to be used for many similar uses such as plastic bags and wraps. The structure of the PBAT polymer is shown to the right. It is depicted as a block co-polymer here due to the common synthetic method of first synthesizing two copolymer blocks and then combining them. However, it is important to note that the actual structure of the polymer is a random co-polymer of the blocks shown.

Biodegradable polymer

Biodegradable polymers are a special class of polymer that breaks down after its intended purpose by bacterial decomposition process to result in natural byproducts such as gases (CO2, N2), water, biomass, and inorganic salts. These polymers are found both naturally and synthetically made, and largely consist of ester, amide, and ether functional groups. Their properties and breakdown mechanism are determined by their exact structure. These polymers are often synthesized by condensation reactions, ring opening polymerization, and metal catalysts. There are vast examples and applications of biodegradable polymers.

Many opportunities exist for the application of synthetic biodegradable polymers in the biomedical area particularly in the fields of tissue engineering and controlled drug delivery. Degradation is important in biomedicine for many reasons. Degradation of the polymeric implant means surgical intervention may not be required in order to remove the implant at the end of its functional life, eliminating the need for a second surgery. In tissue engineering, biodegradable polymers can be designed such to approximate tissues, providing a polymer scaffold that can withstand mechanical stresses, provide a suitable surface for cell attachment and growth, and degrade at a rate that allows the load to be transferred to the new tissue. In the field of controlled drug delivery, biodegradable polymers offer tremendous potential either as a drug delivery system alone or in conjunction to functioning as a medical device.

Plastic Material of a wide range of synthetic or semi-synthetic organic solids

Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be moulded, extruded or pressed into solid objects of various shapes. This adaptability, plus a wide range of other properties, such as being lightweight, durable, flexible, and inexpensive to produce, has led to its widespread use. Plastics typically are made through human industrial systems. Most modern plastics are derived from fossil fuel-based chemicals like natural gas or petroleum; however, recent industrial methods use variants made from renewable materials, such as corn or cotton derivatives.

Polybutylene succinate Biodegradable polymer

Polybutylene succinate (PBS) is a thermoplastic polymer resin of the polyester family. PBS is a biodegradable aliphatic polyester with properties that are comparable to polypropylene.

Biodegradable athletic footwear is athletic footwear that uses biodegradable materials with the ability to compost at the end-of-life phase. Such materials include natural biodegradable polymers, synthetic biodegradable polymers, and biodegradable blends. The use of biodegradable materials is a long-term solution to landfill pollution that can significantly help protect the natural environment by replacing the synthetic, non-biodegradable polymers found in athletic footwear.

β-Butyrolactone Chemical compound

β-Butyrolactone is the intramolecular carboxylic acid ester (lactone) of the optically active 3-hydroxybutanoic acid. It is produced during chemical synthesis as a racemate. β-Butyrolactone is suitable as a monomer for the production of the biodegradable polyhydroxyalkanoate poly(3-hydroxybutyrate) (PHB). Polymerisation of racemic (RS)-β-butyrolactone provides (RS)-polyhydroxybutyric acid, which, however, is inferior in essential properties to the (R)-poly-3-hydroxybutyrate originating from natural sources.

Ipsita Roy is a British-Indian materials scientist who is a Professor at the University of Sheffield. Her research considers natural polymers of bacterial origin for medical applications. She was elected to the New York Academy of Sciences in 1997 and serves as the Editor of the Journal of Chemical Technology & Biotechnology.

References

  1. "Poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid)". sigmaaldrich.com.
  2. 1 2 Cornelia Vasile; Gennady Zaikov (31 December 2009). Environmentally Degradable Materials Based on Multicomponent Polymeric Systems. BRILL. p. 228. ISBN   978-90-04-16410-9 . Retrieved 10 July 2012.
  3. 1 2 Ewa Rudnik (3 January 2008). Compostable Polymer Materials. Elsevier. p. 21. ISBN   978-0-08-045371-2 . Retrieved 10 July 2012.
  4. Emo Chiellini (31 October 2001). Biorelated Polymers: Sustainable Polymer Science and Technology. Springer. p. 147. ISBN   978-0-306-46652-6 . Retrieved 10 July 2012.
  5. 1 2 3 4 5 Srikanth Pilla (20 July 2011). Handbook of Bioplastics and Biocomposites Engineering Applications. John Wiley & Sons. pp. 373–396. ISBN   978-0-470-62607-8 . Retrieved 10 July 2012.
  6. "Polymers". Chemistry XII Part II. NCERT. p. 435.
  7. 1 2 "Bioplastics - Biodegradable polyesters (PLA, PHA, PCL ...)". biodeg.net. Archived from the original on May 2, 2012. Retrieved July 11, 2012.
  8. Rolando Barbucci (31 October 2002). Integrated Biomaterials Science. Springer. p. 144. ISBN   978-0-306-46678-6 . Retrieved 10 July 2012.
  9. David Kaplan (7 July 1998). Biopolymers from Renewable Resources. Springer. p. 21. ISBN   978-3-540-63567-3 . Retrieved 10 July 2012.
  10. William D. Luzier. "Materials derived from biomass/biodegradable materials" (PDF). Retrieved July 11, 2012.