PanCam

Last updated
PanCam
Rosalind Franklin PanCam.jpg
Operator ESA
ManufacturerESA
Instrument typemultispectral imaging
Functionnavigation and science
Mission duration≥ 7 months [1]
Website ExoMars Rover Instrument Suite
Properties
Mass2.13 kg
Power consumption9.2 W
Host spacecraft
Spacecraft Rosalind Franklin rover
Operator ESA

The PanCam (Panoramic Camera) assembly is a set of two wide angle cameras for multi-spectral stereoscopic panoramic imaging, and a high resolution camera for colour imaging that has been designed to search for textural information or shapes that can be related to the presence of microorganisms on Mars. This camera assembly is part of the science payload on board the European Space Agency 's Rosalind Franklin rover, [2] tasked to search for biosignatures and biomarkers on Mars. The rover is planned to be launched in August–October 2022 and land on Mars in spring 2023. [3]

Contents

Overview

This instrument will provide stereo multispectral images, of the terrain nearby. PanCam are the "eyes" of the rover and its primary navigation system. PanCam will also provide the geological context of the sites being explored and help support the selection of the best sites to carry out exobiology studies, as well as assist in some aspect of atmospheric studies. [4] This system will also monitor the sample from the drill before it is crushed inside the rover, where the analytical instruments will perform a detailed chemical analysis. [4]

The Principal Investigator is Professor Andrew Coates of the Mullard Space Science Laboratory, University College London in the United Kingdom.

Description

Spectral parameter [5] Mineralogical
530 nmFerric minerals (hematite)
530 - 610 nmFerric minerals and dust
900 nmBest NIR absorption ferric minerals
950 - 1000 nm hydrated minerals
670 nm/440 nm ratioFerric minerals and dust
610 nm Goethite mineral
950 nmHydrated minerals, some clays and silicates
440 - 670 nmRelated to degree of oxidation

PanCam design includes the following major components: [5]

See also

References

  1. Vago, Jorge L.; et al. (July 2017). "Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover". Astrobiology . 17 (6–7): 471–510. Bibcode:2017AsBio..17..471V. doi:10.1089/ast.2016.1533. PMC   5685153 . PMID   31067287.
  2. Howell, Elizabeth (July 24, 2018). "ExoMars: Searching for Life on Mars". Space.com . Retrieved March 13, 2020.
  3. "N° 6–2020: ExoMars to take off for the Red Planet in 2022" (Press release). ESA. 12 March 2020. Retrieved 12 March 2020.
  4. 1 2 PanCam - the Panoramic Camera. ESA. Accessed 24 July 2018.
  5. 1 2 3 The PanCam Instrument for the ExoMars Rover. A.J. Coates, R. Jaumann, A.D. Griffiths, C.E. Leff, N. Schmitz, J.-L. Josset, G. Paar, M. Gunn, E. Hauber, C.R. Cousins. R.E. Cross, P. Grindrod, J.C. Bridges, M. Balme, S. Gupta, A. Crawford, P. Irwin, R. Stabbins, D. Tirsch, J.L. Vago, T. Theodorou, M. Caballo-Perucha, G.R. Osinski, and the PanCam Team Astrobiology , Vol. 17, No. 6-7. 1 July 2017. doi : 10.1089/ast.2016.1548