Pentamethylcyclopentadienyl ruthenium dichloride dimer

Last updated
Pentamethylcyclopentadienyl ruthenium dichloride dimer
Cp*2Ru2Cl4new.png
Names
IUPAC name
Di-μ-chlorido-bis[chlorido(pentamethyl-η5-cyclopentadienyl)ruthenium(III)]
Other names
Di-μ-chloro-bis[chloro(pentamethylcyclopentadienyl)ruthenium(III)]
Dichloro(pentamethylcyclopentadienyl)ruthenium(III)
Identifiers
3D model (JSmol)
PubChem CID
  • InChI=1S/C10H15.2ClH.Ru/c1-7-6-10(4,5)9(3)8(7)2;;;/h1-5H3;2*1H;/q-1;;;+2/p-2
    Key: CHSNJSBMXZWKQT-UHFFFAOYSA-L
  • CC1=[C-]C(C(=C1C)C)(C)C.Cl[Ru]Cl
Properties
C20H30Cl4Ru2
Appearancebrown solid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Pentamethylcyclopentadienyl ruthenium dichloride is an organoruthenium chemistry with the formula [(C5(CH3)5)RuCl2]2, commonly abbreviated [Cp*RuCl2]2. This brown paramagnetic solid is a reagent in organometallic chemistry. It is an unusual example of a compound that exists as isomers that differ in the intermetallic separation, a difference that is manifested in a number of physical properties. [1]

Contents

Preparation, structure, reactions

The compound has C2h symmetry, with each metal atom having pseudo-octahedral geometry. In the crystal structure, two isomers are observed in the unit cell, one with a 2.93  Å ruthenium–ruthenium bond and the other with a long internuclear distance of 3.75 Å. The former isomer is diamagnetic, and the latter is magnetic. [1] [2]

It is prepared by the reaction of hydrated ruthenium trichloride with pentamethylcyclopentadiene. [3]

2 Cp*H + 2 RuCl3·3H2O → [Cp*RuCl2]2 + 2 HCl + 6 H2O

The reaction is accompanied by formation of decamethylruthenocene.

Pentamethylcyclopentadienyl ruthenium dichloride can reduced to the diamagnetic tetramer of Ru(II):

2 [Cp*RuCl2]2 + 2 Zn → [Cp*RuCl]4 + 2 ZnCl2

Methoxide also can be used to produce a related diruthenium(II) derivative, which is also diamagnetic:

[Cp*RuCl2]2 + 3 NaOCH3 + HOCH3 → [Cp*RuOCH3]2] + 3 NaCl + CH2O + HCl

Treating the tetramer with 1,5-cyclooctadiene in etheral solvent gives the mononuclear complex chloro(1,5-cyclooctadiene)(pentamethylcyclopentadienyl)ruthenium(II). [4] [5]

0.25 [Cp*RuCl]4 + 1,5-cyclooctadiene → Cp*RuCl(1,5-cyclooctadiene)

Compounds like Cp*RuCl(1,5-cyclooctadiene), the tetramer [Cp*RuCl]4, and related diamagnetic Cp*Ru(III) complexes have been investigated as hydrogenation catalysts. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Rhodium(III) chloride</span> Chemical compound

Rhodium(III) chloride refers to inorganic compounds with the formula RhCl3(H2O)n, where n varies from 0 to 3. These are diamagnetic solids featuring octahedral Rh(III) centres. Depending on the value of n, the material is either a dense brown solid or a soluble reddish salt. The soluble trihydrated (n = 3) salt is widely used to prepare compounds used in homogeneous catalysis, notably for the industrial production of acetic acid and hydroformylation.

<span class="mw-page-title-main">Ruthenium(III) chloride</span> Chemical compound

Ruthenium(III) chloride is the chemical compound with the formula RuCl3. "Ruthenium(III) chloride" more commonly refers to the hydrate RuCl3·xH2O. Both the anhydrous and hydrated species are dark brown or black solids. The hydrate, with a varying proportion of water of crystallization, often approximating to a trihydrate, is a commonly used starting material in ruthenium chemistry.

Cycloocta-1,5-diene is a cyclic hydrocarbon with the chemical formula C8H12, specifically [−(CH2)2−CH=CH−]2.

<span class="mw-page-title-main">Pentamethylcyclopentadiene</span> Chemical compound

1,2,3,4,5-Pentamethylcyclopentadiene is a cyclic diene with the formula C5(CH3)5H, often written C5Me5H, where Me is CH3. It is a colorless liquid.

<span class="mw-page-title-main">Titanocene dichloride</span> Chemical compound

Titanocene dichloride is the organotitanium compound with the formula (η5-C5H5)2TiCl2, commonly abbreviated as Cp2TiCl2. This metallocene is a common reagent in organometallic and organic synthesis. It exists as a bright red solid that slowly hydrolyzes in air. It shows antitumour activity and was the first non-platinum complex to undergo clinical trials as a chemotherapy drug.

<span class="mw-page-title-main">Hapticity</span> Number of contiguous atoms in a ligand that bond to the central atom in a coordination complex

In coordination chemistry, hapticity is the coordination of a ligand to a metal center via an uninterrupted and contiguous series of atoms. The hapticity of a ligand is described with the Greek letter η ('eta'). For example, η2 describes a ligand that coordinates through 2 contiguous atoms. In general the η-notation only applies when multiple atoms are coordinated. In addition, if the ligand coordinates through multiple atoms that are not contiguous then this is considered denticity, and the κ-notation is used once again. When naming complexes care should be taken not to confuse η with μ ('mu'), which relates to bridging ligands.

<span class="mw-page-title-main">Dewar benzene</span> Chemical compound

Dewar benzene (also spelled dewarbenzene) or bicyclo[2.2.0]hexa-2,5-diene is a bicyclic isomer of benzene with the molecular formula C6H6. The compound is named after James Dewar who included this structure in a list of possible C6H6 structures in 1869. However, he did not propose it as the structure of benzene, and in fact he supported the correct structure previously proposed by August Kekulé in 1865.

Martin Arthur Bennett FRS is an Australian inorganic chemist. He gained recognition for studies on the co-ordination chemistry of tertiary phosphines, olefins, and acetylenes, and the relationship of their behaviour to homogeneous catalysis.

<span class="mw-page-title-main">(Cymene)ruthenium dichloride dimer</span> Chemical compound

(Cymene)ruthenium dichloride dimer is the organometallic compound with the formula [(cymene)RuCl2]2. This red-coloured, diamagnetic solid is a reagent in organometallic chemistry and homogeneous catalysis. The complex is structurally similar to (benzene)ruthenium dichloride dimer.

<span class="mw-page-title-main">Chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium</span> Chemical compound

Chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium is the organoruthenium half-sandwich compound with formula RuCl(PPh3)2(C5H5). It as an air-stable orange crystalline solid that is used in a variety of organometallic synthetic and catalytic transformations. The compound has idealized Cs symmetry. It is soluble in chloroform, dichloromethane, and acetone.

<span class="mw-page-title-main">Pentamethylcyclopentadienyl iridium dichloride dimer</span> Chemical compound

Pentamethylcyclopentadienyl iridium dichloride dimer is an organometallic compound with the formula [(C5(CH3)5IrCl2)]2, commonly abbreviated [Cp*IrCl2]2 This bright orange air-stable diamagnetic solid is a reagent in organometallic chemistry.

<span class="mw-page-title-main">Organoruthenium chemistry</span>

Organoruthenium chemistry is the chemistry of organometallic compounds containing a carbon to ruthenium chemical bond. Several organoruthenium catalysts are of commercial interest and organoruthenium compounds have been considered for cancer therapy. The chemistry has some stoichiometric similarities with organoiron chemistry, as iron is directly above ruthenium in group 8 of the periodic table. The most important reagents for the introduction of ruthenium are ruthenium(III) chloride and triruthenium dodecacarbonyl.

<span class="mw-page-title-main">Peter Maitlis</span> British chemist (1933–2022)

Peter Michael Maitlis, FRS was a British organometallic chemist.

Molybdocene dichloride is the organomolybdenum compound with the formula (η5-C5H5)2MoCl2 and IUPAC name dichlorobis(η5-cyclopentadienyl)molybdenum(IV), and is commonly abbreviated as Cp2MoCl2. It is a brownish-green air- and moisture-sensitive powder. In the research laboratory, it is used to prepare many derivatives.

<span class="mw-page-title-main">Half sandwich compound</span> Class of coordination compounds

Half sandwich compounds, also known as piano stool complexes, are organometallic complexes that feature a cyclic polyhapto ligand bound to an MLn center, where L is a unidentate ligand. Thousands of such complexes are known. Well-known examples include cyclobutadieneiron tricarbonyl and (C5H5)TiCl3. Commercially useful examples include (C5H5)Co(CO)2, which is used in the synthesis of substituted pyridines, and methylcyclopentadienyl manganese tricarbonyl, an antiknock agent in petrol.

<span class="mw-page-title-main">Tris(acetonitrile)cyclopentadienylruthenium hexafluorophosphate</span> Chemical compound

Tris(acetonitrile)cyclopentadienylruthenium hexafluorophosphate is an organoruthenium compound with the formula [(C5H5)Ru(NCCH3)3]PF6, abbreviated [CpRu(NCMe)3]PF6. It is a yellow-brown solid that is soluble in polar organic solvents. The compound is a salt consisting of the hexafluorophosphate anion and the cation [CpRu(NCMe)3]+. In coordination chemistry, it is used as a source of RuCp+ for further derivitization. In organic synthesis, it is a homogeneous catalyst. It enables C-C bond formation and promotes cycloadditions. The cyclopentadienyl ligand (Cp) is bonded in an η5 manner to the Ru(II) center.

In chemistry, bond stretch isomerism is a concept of isomerism based on variations of bond length. The concept was proposed in the 1970s but was refuted in the 1990s.

<span class="mw-page-title-main">Pentamethylcyclopentadienyl rhodium dichloride dimer</span> Chemical compound

Pentamethylcyclopentadienyl rhodium dichloride dimer is an organometallic compound with the formula [(C5(CH3)5RhCl2)]2, commonly abbreviated [Cp*RhCl2]2 This dark red air-stable diamagnetic solid is a reagent in organometallic chemistry.

<span class="mw-page-title-main">Decamethylsilicocene</span> Chemical Compound

Decamethylsilicocene, (C5Me5)2Si, is a group 14 sandwich compound. It is an example of a main-group cyclopentadienyl complex; these molecules are related to metallocenes but contain p-block elements as the central atom. It is a colorless, air sensitive solid that sublimes under vacuum.

<span class="mw-page-title-main">(Benzene)ruthenium dichloride dimer</span> Chemical compound

(Benzene)ruthenium dichloride dimer is the organoruthenium compound with the formula [(C6H6)RuCl2]2. This red-coloured, diamagnetic solid is a reagent in organometallic chemistry and homogeneous catalysis.

References

  1. 1 2 McGrady, John E. (2000). "[(Cp*RuCl)2(μ-Cl)2]: bond-stretch or spin-state isomerism?". Angewandte Chemie International Edition. 39 (17): 3077–3079. doi:10.1002/1521-3773(20000901)39:17<3077::AID-ANIE3077>3.0.CO;2-B. PMID   11028037.
  2. Kölle, Urich; Kossakowski, Janusz; Klaff, Norbert; Wesemann, Lars; Englert, Ulli; Herberich, Gerhard E. (1991). "Dichloro(pentamethylcyclopentadienyl)ruthenium—Novel Dichotomy in a Molecular Structure". Angew. Chem. Int. Ed. Engl. 30 (6): 690–691. doi:10.1002/anie.199106901.
  3. Kölle, Urich; Kossakowski, Janusz (1992). "Di-μ-Chloro-Bis[(η5 -Pentamethylcyclopentadienyl) Chlororuthenium(III)], [Cp* RuCl2 ]2 and Di-μ-methoxo-Bis(η5 -Pentamethylcyclopentadienyl)diruthenium(II), [Cp* RuOMe]2". Di-μ-Chloro-Bis[(η5-Pentamethylcyclopentadienyl) Chlororuthenium(III)], [Cp*RuCl2]2 and Di-μ-methoxo-Bis(η5-Pentamethylcyclopentadienyl)diruthenium(II), [Cp*RuOMe]2. Inorganic Syntheses. Vol. 29. pp. 225–228. doi:10.1002/9780470132609.ch52. ISBN   9780470132609.
  4. Koelle, Ulrigh; Kossakowski, Janusz (May 1989). "Pentamethylcyclopentadienylruthenium complexes". Journal of Organometallic Chemistry. 362 (3): 383–398. doi:10.1016/0022-328x(89)87260-2. ISSN   0022-328X.
  5. Fagan, Paul J.; Mahoney, Wayne S.; Calabrese, Joseph C.; Williams, Ian D. (June 1990). "Structure and chemistry of the complex tetrakis(.eta.5-pentamethylcyclopentadienyl)tetrakis(.mu.3-chloro)tetraruthenium(II): a useful precursor to (pentamethylcyclopentadienyl)ruthenium(0), -(II), and -(IV) complexes". Organometallics. 9 (6): 1843–1852. doi:10.1021/om00156a025. ISSN   0276-7333.
  6. Fürstner, Alois (2019-01-09). "trans -Hydrogenation, gem -Hydrogenation, and trans -Hydrometalation of Alkynes: An Interim Report on an Unorthodox Reactivity Paradigm". Journal of the American Chemical Society. 141 (1): 11–24. doi:10.1021/jacs.8b09782. ISSN   0002-7863. PMID   30422659. S2CID   53303730.