Peter Kohl | |
---|---|
Born | 1962 (age 61–62) |
Nationality | German, British |
Awards | Fellow of the International Union of Physiological Sciences 2023 Fellow of The Physiological Society 2017 ContentsHeart Rhythm Society 2011 |
Scientific career | |
Institutions | University of Freiburg Imperial College London |
Website |
Peter Kohl is a German scientist specializing in integrative cardiac research. He studies heterocellular electrophysiological interactions in cardiac tissue, [1] [2] [3] myocardial structure-function relationships using 'wet' and 'dry' lab models, [4] [5] [6] and mechano-electrical autoregulation of the heart. [7] [8] [9]
Kohl studied medicine and biophysics in Moscow before completing his doctorate and his residency in physiology at the Humboldt University in Berlin. Supported by a scholarship from the Boehringer-Ingelheim Foundation, he went as a post-doctoral researcher to the chair of Prof. Denis Noble, Department of Physiology at the University of Oxford, where - using a combination of experimental and theoretical models - he explored cardiac mechanobiology and heterocellular interactions. [1] [8] [10]
Supported by personal fellowships from the UK Royal Society and the British Heart Foundation, he founded the Cardiac Mechano-Electric Feedback Lab at Oxford. Work from this time ranged from the mechanistic explanation of the Bainbridge effect (mechanically induced increase in heart rate) in isolated pacemaker cells stretched during patch clamp measurements with carbon fibres, [11] the description of a stretch-induced increase in calcium release from the sarcoplasmic reticulum as a mechanism contributing to the Frank–Starling law, [12] to the exploration of direct electrical coupling of cardiac fibroblasts and muscle cells. [1] [2] [13]
After two decades of research and teaching at Oxford, Kohl was appointed Inaugural Chair in Cardiac Biophysics and Systems Biology at Imperial College London. Work during this time, funded by the ERC Advanced Grant CardioNECT, focused on the development and use of novel optogenetic and fluorometric techniques, [14] resulting in the first functional demonstration of heterocellular electrical cell coupling in native heart tissue. [3] After five years in London, Kohl was recruited to Freiburg University in 2016 as the founding director of the Institute for Experimental Cardiovascular Medicine (IEKM). [15] [16]
The English-language IEKM is structured with flat hierarchies and a broad interdisciplinary profile. [17] About 40% of staff are from outside Germany, with scientific backgrounds in physiology, pharmacology, medicine, biology, physics, engineering and mathematics. The institute has grown from 6 to almost 60 staff and students in just a few years, established a novel biobank concept (in which functional data collected on live human tissue are an integral part of the biobank), and it is committed to teaching in small group formats such as the new 1-year international MSc in Medical Sciences - Cardiovascular Research with an annual intake of no more than 6 pre-PhD students.
Kohl is a visiting professor at the University of Oxford [18] and Imperial College London. [19] [20] He served as co-founding director (with Peter Coveney, University College London) of the Virtual Physiological Human Network of Excellence (VPH NoE) [21] and he is the Speaker of the German national collaborative research centre SFB1425 'Make Better Scars'. [22] From 2018-2020, Kohl was joint Editor-in-Chief (with Denis Noble and Tom Blundell) of Progress in Biophysics and Molecular Biology , and from 2022-2023, he was Editor-in-Chief of The Journal of Physiology. [23]
The sarcoplasmic reticulum (SR) is a membrane-bound structure found within muscle cells that is similar to the smooth endoplasmic reticulum in other cells. The main function of the SR is to store calcium ions (Ca2+). Calcium ion levels are kept relatively constant, with the concentration of calcium ions within a cell being 10,000 times smaller than the concentration of calcium ions outside the cell. This means that small increases in calcium ions within the cell are easily detected and can bring about important cellular changes (the calcium is said to be a second messenger). Calcium is used to make calcium carbonate (found in chalk) and calcium phosphate, two compounds that the body uses to make teeth and bones. This means that too much calcium within the cells can lead to hardening (calcification) of certain intracellular structures, including the mitochondria, leading to cell death. Therefore, it is vital that calcium ion levels are controlled tightly, and can be released into the cell when necessary and then removed from the cell.
Cardiac muscle is one of three types of vertebrate muscle tissues, the others being skeletal muscle and smooth muscle. It is an involuntary, striated muscle that constitutes the main tissue of the wall of the heart. The cardiac muscle (myocardium) forms a thick middle layer between the outer layer of the heart wall and the inner layer, with blood supplied via the coronary circulation. It is composed of individual cardiac muscle cells joined by intercalated discs, and encased by collagen fibers and other substances that form the extracellular matrix.
The sinoatrial node is an oval shaped region of special cardiac muscle in the upper back wall of the right atrium made up of cells known as pacemaker cells. The sinus node is approximately 15 mm long, 3 mm wide, and 1 mm thick, located directly below and to the side of the superior vena cava.
The Frank–Starling law of the heart represents the relationship between stroke volume and end diastolic volume. The law states that the stroke volume of the heart increases in response to an increase in the volume of blood in the ventricles, before contraction, when all other factors remain constant. As a larger volume of blood flows into the ventricle, the blood stretches cardiac muscle, leading to an increase in the force of contraction. The Frank-Starling mechanism allows the cardiac output to be synchronized with the venous return, arterial blood supply and humoral length, without depending upon external regulation to make alterations. The physiological importance of the mechanism lies mainly in maintaining left and right ventricular output equality.
Muscle contraction is the activation of tension-generating sites within muscle cells. In physiology, muscle contraction does not necessarily mean muscle shortening because muscle tension can be produced without changes in muscle length, such as when holding something heavy in the same position. The termination of muscle contraction is followed by muscle relaxation, which is a return of the muscle fibers to their low tension-generating state.
T-tubules are extensions of the cell membrane that penetrate into the center of skeletal and cardiac muscle cells. With membranes that contain large concentrations of ion channels, transporters, and pumps, T-tubules permit rapid transmission of the action potential into the cell, and also play an important role in regulating cellular calcium concentration.
Denis Noble is a British physiologist and biologist who held the Burdon Sanderson Chair of Cardiovascular Physiology at the University of Oxford from 1984 to 2004 and was appointed Professor Emeritus and co-Director of Computational Physiology. He is one of the pioneers of systems biology and developed the first viable mathematical model of the working heart in 1960. Noble established The Third Way of Evolution (TWE) project with James A. Shapiro which predicts that the entire framework of the modern synthesis will be replaced.
Calcium-induced calcium release (CICR) describes a biological process whereby calcium is able to activate calcium release from intracellular Ca2+ stores (e.g., endoplasmic reticulum or sarcoplasmic reticulum). Although CICR was first proposed for skeletal muscle in the 1970s, it is now known that CICR is unlikely to be the primary mechanism for activating SR calcium release. Instead, CICR is thought to be crucial for excitation-contraction coupling in cardiac muscle. It is now obvious that CICR is a widely occurring cellular signaling process present even in many non-muscle cells, such as in the insulin-secreting pancreatic beta cells, epithelium, and many other cells. Since CICR is a positive-feedback system, it has been of great interest to elucidate the mechanism(s) responsible for its termination.
A calcium spark is the microscopic release of calcium (Ca2+) from a store known as the sarcoplasmic reticulum (SR), located within muscle cells. This release occurs through an ion channel within the membrane of the SR, known as a ryanodine receptor (RyR), which opens upon activation. This process is important as it helps to maintain Ca2+ concentration within the cell. It also initiates muscle contraction in skeletal and cardiac muscles and muscle relaxation in smooth muscles. Ca2+ sparks are important in physiology as they show how Ca2+ can be used at a subcellular level, to signal both local changes, known as local control, as well as whole cell changes.
The Bowditch effect, also known as the Treppe phenomenon or Treppe effect or Staircase Phenomenon, is an autoregulation method by which myocardial tension increases with an increase in heart rate. It was first observed by Henry Pickering Bowditch in 1871.
Ryanodine receptor 2 (RYR2) is one of a class of ryanodine receptors and a protein found primarily in cardiac muscle. In humans, it is encoded by the RYR2 gene. In the process of cardiac calcium-induced calcium release, RYR2 is the major mediator for sarcoplasmic release of stored calcium ions.
Protein S100-A1, also known as S100 calcium-binding protein A1 is a protein which in humans is encoded by the S100A1 gene. S100A1 is highly expressed in cardiac and skeletal muscle, and localizes to Z-discs and sarcoplasmic reticulum. S100A1 has shown promise as an effective candidate for gene therapy to treat post-myocardially infarcted cardiac tissue.
The cardiac transient outward potassium current (referred to as Ito1 or Ito ) is one of the ion currents across the cell membrane of heart muscle cells. It is the main contributing current during the repolarizing phase 1 of the cardiac action potential. It is a result of the movement of positively charged potassium (K+) ions from the intracellular to the extracellular space. Ito1 is complemented with Ito2 resulting from Cl− ions to form the transient outward current Ito.
Celivarone is an experimental drug being tested for use in pharmacological antiarrhythmic therapy. Cardiac arrhythmia is any abnormality in the electrical activity of the heart. Arrhythmias range from mild to severe, sometimes causing symptoms like palpitations, dizziness, fainting, and even death. They can manifest as slow (bradycardia) or fast (tachycardia) heart rate, and may have a regular or irregular rhythm.
Calcium buffering describes the processes which help stabilise the concentration of free calcium ions within cells, in a similar manner to how pH buffers maintain a stable concentration of hydrogen ions. The majority of calcium ions within the cell are bound to intracellular proteins, leaving a minority freely dissociated. When calcium is added to or removed from the cytoplasm by transport across the cell membrane or sarcoplasmic reticulum, calcium buffers minimise the effect on changes in cytoplasmic free calcium concentration by binding calcium to or releasing calcium from intracellular proteins. As a result, 99% of the calcium added to the cytosol of a cardiomyocyte during each cardiac cycle becomes bound to calcium buffers, creating a relatively small change in free calcium.
Cardiophysics is an interdisciplinary science that stands at the junction of cardiology and medical physics, with researchers using the methods of, and theories from, physics to study cardiovascular system at different levels of its organisation, from the molecular scale to whole organisms. Being formed historically as part of systems biology, cardiophysics designed to reveal connections between the physical mechanisms, underlying the organization of the cardiovascular system, and biological features of its functioning.
Cardiac excitation-contraction coupling (CardiacEC coupling) describes the series of events, from the production of an electrical impulse (action potential) to the contraction of muscles in the heart. This process is of vital importance as it allows for the heart to beat in a controlled manner, without the need for conscious input. EC coupling results in the sequential contraction of the heart muscles that allows blood to be pumped, first to the lungs (pulmonary circulation) and then around the rest of the body (systemic circulation) at a rate between 60 and 100 beats every minute, when the body is at rest. This rate can be altered, however, by nerves that work to either increase heart rate (sympathetic nerves) or decrease it (parasympathetic nerves), as the body's oxygen demands change. Ultimately, muscle contraction revolves around a charged atom (ion), calcium (Ca2+), which is responsible for converting the electrical energy of the action potential into mechanical energy (contraction) of the muscle. This is achieved in a region of the muscle cell, called the transverse tubule during a process known as calcium induced calcium release.
Gap junction modulation describes the functional manipulation of gap junctions, specialized channels that allow direct electrical and chemical communication between cells without exporting material from the cytoplasm. Gap junctions play an important regulatory role in various physiological processes including signal propagation in cardiac muscles and tissue homeostasis of the liver. Modulation is required, since gap junctions must respond to their environment, whether through an increased expression or permeability. Impaired or altered modulation can have significant health implications and are associated with the pathogenesis of the liver, heart and intestines.
Progress in Biophysics and Molecular Biology is a peer-reviewed scientific journal publishing review articles in the fields of biophysics and molecular biology. It was established in 1950 as Progress in Biophysics and Biophysical Chemistry, obtaining its current title in 1963.
Dario DiFrancesco is a Professor Emeritus (Physiology) at the University of Milano. In 1979, he and collaborators discovered the so-called "funny" current in cardiac pacemaker cells, a new mechanism involved in the generation of cardiac spontaneous activity and autonomic regulation of heart rate. That initiated a new field of research in the heart and brain, where hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, the molecular components of "funny" channels cloned in the late 90's, are today known to play fundamental roles in health and disease. Clinically relevant exploitation of the properties of "funny" channels has developed a channel blocker with specific heart rate-slowing action, ivabradine, marketed for the therapy of coronary artery disease, heart failure and the symptomatic treatment of chronic stable angina.