Philo line

Last updated

In geometry, the Philo line is a line segment defined from an angle and a point inside the angle as the shortest line segment through the point that has its endpoints on the two sides of the angle. Also known as the Philon line, it is named after Philo of Byzantium, a Greek writer on mechanical devices, who lived probably during the 1st or 2nd century BC. Philo used the line to double the cube; [1] [2] because doubling the cube cannot be done by a straightedge and compass construction, neither can constructing the Philo line. [1] [3]

Contents

Geometric characterization

The philo line of a point P and angle DOE, and the defining equality of distances from P and Q to the ends of DE, where Q is the base of a perpendicular from the apex of the angle Philo line equality.svg
The philo line of a point P and angle DOE, and the defining equality of distances from P and Q to the ends of DE, where Q is the base of a perpendicular from the apex of the angle

The defining point of a Philo line, and the base of a perpendicular from the apex of the angle to the line, are equidistant from the endpoints of the line. That is, suppose that segment is the Philo line for point and angle , and let be the base of a perpendicular line to . Then and . [1]

Conversely, if and are any two points equidistant from the ends of a line segment , and if is any point on the line through that is perpendicular to , then is the Philo line for angle and point . [1]

Algebraic Construction

A suitable fixation of the line given the directions from to and from to and the location of in that infinite triangle is obtained by the following algebra:

The point is put into the center of the coordinate system, the direction from to defines the horizontal -coordinate, and the direction from to defines the line with the equation in the rectilinear coordinate system. is the tangent of the angle in the triangle . Then has the Cartesian Coordinates and the task is to find on the horizontal axis and on the other side of the triangle.

The equation of a bundle of lines with inclinations that run through the point is

These lines intersect the horizontal axis at

which has the solution

These lines intersect the opposite side at

which has the solution

The squared Euclidean distance between the intersections of the horizontal line and the diagonal is

The Philo Line is defined by the minimum of that distance at negative .

An arithmetic expression for the location of the minimum is obtained by setting the derivative , so

So calculating the root of the polynomial in the numerator,

determines the slope of the particular line in the line bundle which has the shortest length. [The global minimum at inclination from the root of the other factor is not of interest; it does not define a triangle but means that the horizontal line, the diagonal and the line of the bundle all intersect at .]

is the tangent of the angle .

Inverting the equation above as and plugging this into the previous equation one finds that is a root of the cubic polynomial

So solving that cubic equation finds the intersection of the Philo line on the horizontal axis. Plugging in the same expression into the expression for the squared distance gives

Location of

Since the line is orthogonal to , its slope is , so the points on that line are . The coordinates of the point are calculated by intersecting this line with the Philo line, . yields

With the coordinates shown above, the squared distance from to is

.

The squared distance from to is

.

The difference of these two expressions is

.

Given the cubic equation for above, which is one of the two cubic polynomials in the numerator, this is zero. This is the algebraic proof that the minimization of leads to .

Special case: right angle

The equation of a bundle of lines with inclination that run through the point , , has an intersection with the -axis given above. If form a right angle, the limit of the previous section results in the following special case:

These lines intersect the -axis at

which has the solution

The squared Euclidean distance between the intersections of the horizontal line and vertical lines is

The Philo Line is defined by the minimum of that curve (at negative ). An arithmetic expression for the location of the minimum is where the derivative , so

equivalent to

Therefore

Alternatively, inverting the previous equations as and plugging this into another equation above one finds

Doubling the cube

The Philo line can be used to double the cube, that is, to construct a geometric representation of the cube root of two, and this was Philo's purpose in defining this line. Specifically, let be a rectangle whose aspect ratio is , as in the figure. Let be the Philo line of point with respect to right angle . Define point to be the point of intersection of line and of the circle through points . Because triangle is inscribed in the circle with as diameter, it is a right triangle, and is the base of a perpendicular from the apex of the angle to the Philo line.

Let be the point where line crosses a perpendicular line through . Then the equalities of segments , , and follow from the characteristic property of the Philo line. The similarity of the right triangles , , and follow by perpendicular bisection of right triangles. Combining these equalities and similarities gives the equality of proportions or more concisely . Since the first and last terms of these three equal proportions are in the ratio , the proportions themselves must all be , the proportion that is required to double the cube. [4]

Philo line.svg

Since doubling the cube is impossible with a straightedge and compass construction, it is similarly impossible to construct the Philo line with these tools. [1] [3]

Minimizing the area

Given the point and the angle , a variant of the problem may minimize the area of the triangle . With the expressions for and given above, the area is half the product of height and base length,

.

Finding the slope that minimizes the area means to set ,

.

Again discarding the root which does not define a triangle, the slope is in that case

and the minimum area

.

Related Research Articles

<span class="mw-page-title-main">Elliptic curve</span> Algebraic curve

In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. An elliptic curve is defined over a field K and describes points in K2, the Cartesian product of K with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions (x, y) for:

<span class="mw-page-title-main">Parabola</span> Plane curve: conic section

In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.

<span class="mw-page-title-main">Tetrahedron</span> Polyhedron with 4 faces

In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra.

<span class="mw-page-title-main">Law of sines</span> Property of all triangles on a Euclidean plane

In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law,

Unit quaternions, known as versors, provide a convenient mathematical notation for representing spatial orientations and rotations of elements in three dimensional space. Specifically, they encode information about an axis-angle rotation about an arbitrary axis. Rotation and orientation quaternions have applications in computer graphics, computer vision, robotics, navigation, molecular dynamics, flight dynamics, orbital mechanics of satellites, and crystallographic texture analysis.

<span class="mw-page-title-main">Aircraft flight dynamics</span> Science of air vehicle orientation and control in three dimensions

Flight dynamics is the science of air vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of gravity (cg), known as pitch, roll and yaw. These are collectively known as aircraft attitude, often principally relative to the atmospheric frame in normal flight, but also relative to terrain during takeoff or landing, or when operating at low elevation. The concept of attitude is not specific to fixed-wing aircraft, but also extends to rotary aircraft such as helicopters, and dirigibles, where the flight dynamics involved in establishing and controlling attitude are entirely different.

<span class="mw-page-title-main">Pedal curve</span> Curve generated by the projections of a fixed point on the tangents of another curve

In mathematics, a pedal curve of a given curve results from the orthogonal projection of a fixed point on the tangent lines of this curve. More precisely, for a plane curve C and a given fixed pedal pointP, the pedal curve of C is the locus of points X so that the line PX is perpendicular to a tangent T to the curve passing through the point X. Conversely, at any point R on the curve C, let T be the tangent line at that point R; then there is a unique point X on the tangent T which forms with the pedal point P a line perpendicular to the tangent T – the pedal curve is the set of such points X, called the foot of the perpendicular to the tangent T from the fixed point P, as the variable point R ranges over the curve C.

<span class="mw-page-title-main">Envelope (mathematics)</span> Family of curves in geometry

In geometry, an envelope of a planar family of curves is a curve that is tangent to each member of the family at some point, and these points of tangency together form the whole envelope. Classically, a point on the envelope can be thought of as the intersection of two "infinitesimally adjacent" curves, meaning the limit of intersections of nearby curves. This idea can be generalized to an envelope of surfaces in space, and so on to higher dimensions.

In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center.

<span class="mw-page-title-main">Orthogonal trajectory</span>

In mathematics, an orthogonal trajectory is a curve which intersects any curve of a given pencil of (planar) curves orthogonally.

<span class="mw-page-title-main">Strophoid</span> Geometric curve constructed from another curve and two points

In geometry, a strophoid is a curve generated from a given curve C and points A and O as follows: Let L be a variable line passing through O and intersecting C at K. Now let P1 and P2 be the two points on L whose distance from K is the same as the distance from A to K. The locus of such points P1 and P2 is then the strophoid of C with respect to the pole O and fixed point A. Note that AP1 and AP2 are at right angles in this construction.

<span class="mw-page-title-main">Trilinear coordinates</span> Coordinate system based on distances from the sidelines of a given triangle

In geometry, the trilinear coordinatesx : y : z of a point relative to a given triangle describe the relative directed distances from the three sidelines of the triangle. Trilinear coordinates are an example of homogeneous coordinates. The ratio x : y is the ratio of the perpendicular distances from the point to the sides opposite vertices A and B respectively; the ratio y : z is the ratio of the perpendicular distances from the point to the sidelines opposite vertices B and C respectively; and likewise for z : x and vertices C and A.

There are several equivalent ways for defining trigonometric functions, and the proof of the trigonometric identities between them depend on the chosen definition. The oldest and somehow the most elementary definition is based on the geometry of right triangles. The proofs given in this article use this definition, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles, see Trigonometric functions.

<span class="mw-page-title-main">Limaçon trisectrix</span> Quartic plane curve

In geometry, a limaçon trisectrix is the name for the quartic plane curve that is a trisectrix that is specified as a limaçon. The shape of the limaçon trisectrix can be specified by other curves particularly as a rose, conchoid or epitrochoid. The curve is one among a number of plane curve trisectrixes that includes the Conchoid of Nicomedes, the Cycloid of Ceva, Quadratrix of Hippias, Trisectrix of Maclaurin, and Tschirnhausen cubic. The limaçon trisectrix a special case of a sectrix of Maclaurin.

<span class="mw-page-title-main">Sectrix of Maclaurin</span> Curve traced by the crossing of two lines revolving about poles

In geometry, a sectrix of Maclaurin is defined as the curve swept out by the point of intersection of two lines which are each revolving at constant rates about different points called poles. Equivalently, a sectrix of Maclaurin can be defined as a curve whose equation in biangular coordinates is linear. The name is derived from the trisectrix of Maclaurin, which is a prominent member of the family, and their sectrix property, which means they can be used to divide an angle into a given number of equal parts. There are special cases known as arachnida or araneidans because of their spider-like shape, and Plateau curves after Joseph Plateau who studied them.

<span class="mw-page-title-main">Snellius–Pothenot problem</span> Problem in trigonometry

In trigonometry, the Snellius–Pothenot problem is a problem first described in the context of planar surveying. Given three known points A, B, C, an observer at an unknown point P observes that the line segment AC subtends an angle α and the segment CB subtends an angle β; the problem is to determine the position of the point P..

<span class="mw-page-title-main">Plate theory</span>

In continuum mechanics, plate theories are mathematical descriptions of the mechanics of flat plates that draw on the theory of beams. Plates are defined as plane structural elements with a small thickness compared to the planar dimensions. The typical thickness to width ratio of a plate structure is less than 0.1. A plate theory takes advantage of this disparity in length scale to reduce the full three-dimensional solid mechanics problem to a two-dimensional problem. The aim of plate theory is to calculate the deformation and stresses in a plate subjected to loads.

In Euclidean geometry, for a plane curve C and a given fixed point O, the pedal equation of the curve is a relation between r and p where r is the distance from O to a point on C and p is the perpendicular distance from O to the tangent line to C at the point. The point O is called the pedal point and the values r and p are sometimes called the pedal coordinates of a point relative to the curve and the pedal point. It is also useful to measure the distance of O to the normal pc (the contrapedal coordinate) even though it is not an independent quantity and it relates to (r, p) as

<span class="mw-page-title-main">Ming Antu's infinite series expansion of trigonometric functions</span>

Ming Antu's infinite series expansion of trigonometric functions. Ming Antu, a court mathematician of the Qing dynasty did extensive work on the infinite series expansion of trigonometric functions in his masterpiece Geyuan Milü Jiefa (Quick Method of Dissecting the Circle and Determination of The Precise Ratio of the Circle). Ming Antu built geometrical models based on a major arc of a circle and the nth dissection of the major arc. In Fig 1, AE is the major chord of arc ABCDE, and AB, BC, CD, DE are its nth equal segments. If chord AE = y, chord AB = BC = CD = DE = x, the task was to find chord y as the infinite series expansion of chord x. He studied the cases of n = 2, 3, 4, 5, 10, 100, 1000 and 10000 in great detail in volumes 3 and 4 of Geyuan Milü Jiefa.

The trigonometry of a tetrahedron explains the relationships between the lengths and various types of angles of a general tetrahedron.

References

  1. 1 2 3 4 5 Eves, Howard (1965). A Survey of Geometry. Vol. 2. Boston: Allyn and Bacon. pp. 39, 234–236.
  2. Wells, David (1991). "Philo's line". The Penguin Dictionary of Curious and Interesting Geometry. Penguin Books. pp. 182–183.
  3. 1 2 Kimberling, Clark (2003). Geometry in Action: A Discovery Approach Using The Geometer's Sketchpad. Emeryville, California: Key College Publishing. pp. 115–116. ISBN   1-931914-02-8.
  4. Coxeter, H. S. M.; van de Craats, Jan (1993). "Philon lines in non-Euclidean planes". Journal of Geometry. 48 (1–2): 26–55. doi:10.1007/BF01226799. MR   1242701. S2CID   120488240.

Further reading