Pho regulon

Last updated
Regulation of inorganic phosphate within the cellular system. Pho Regulon Summary.svg
Regulation of inorganic phosphate within the cellular system.

The Phosphate (Pho) regulon is a regulatory mechanism used for the conservation and management of inorganic phosphate within the cell. It was first discovered in Escherichia coli as an operating system for the bacterial strain, and was later identified in other species. [1] The Pho system is composed of various components including extracellular enzymes and transporters that are capable of phosphate assimilation in addition to extracting inorganic phosphate from organic sources. [2] This is an essential process since phosphate plays an important role in cellular membranes, genetic expression, and metabolism within the cell. Under low nutrient availability, the Pho regulon helps the cell survive and thrive despite a depletion of phosphate within the environment. When this occurs, phosphate starvation-inducible (psi) genes activate other proteins that aid in the transport of inorganic phosphate. [3]

Contents

Function

The Pho regulon is controlled by a two-component regulatory system composed of a histidine kinase sensor protein (PhoR) within the inner membrane and a transcriptional response regulator (PhoB/PhoR) on the cytoplasmic side of the membrane. [2] These proteins bind to upstream promoters in the pho regulon in order to induce a general change in gene transcription. This occurs when the cell senses low concentrations of phosphate within its internal environment causing the response regulator to be phosphorylated inducing an overall decrease in gene transcription. This mechanism is ubiquitous within gram-positive, gram-negative, cyanobacteria, yeasts, and archaea. [3]

Signal transduction pathway

Depletion of inorganic phosphate within the cell is required for activation of the Pho regulon in most prokaryotes. In the most commonly studied bacterium, E. coli, seven total proteins are used to detect intracellular levels of inorganic phosphate along with transfusing that signal appropriately. [2] Of the seven proteins, one is a metal binding protein (PhoU) and four are phosphate-specific transporters (Pst S, Pst C, Pst A, and Pst B). The transcriptional response regulator PhoR activates PhoB when it senses low intracellular inorganic phosphate levels. [2]

Alternative phosphate usage

Although inorganic phosphate is primarily used in the Pho regulon system, there are several species of bacteria that can utilize varying forms of phosphate. One example is seen in E. coli which can use both inorganic and organic phosphate, as well as naturally occurring or synthetic phosphates (Phn). [3] Several enzymes breakdown the compounds of the alternative phosphates, allowing the organism to use the phosphate via the C-P lyase pathway. [3] Other species of bacteria like Pseudomonas aeruginosa and Salmonella typhimurium use a different pathway called the phosphonatase pathway, whereas the bacterium Enterobacter aerogenes can use either one of the pathways to cleave the C-P bond found in the alternative phosphates. [3]

Conservation among bacterial species

Although the Pho regulon system is most widely studied in Escherichia coli it is found in other bacterial species such as Pseudomonas fluorescens and Bacillus subtilis. In Pseudomonas fluorescens, the transcriptional response regulator (PhoB/PhoR) retain the same function they play in E. coli. [4] Bacillus subtilis also shares some similarities when encountering low intracellular phosphate concentrations. Under phosphate-starved conditions B. subtilis binds its transcription regulator, PhoP and the histidine kinase, PhoR to the Pho-regulon gene which induces a production of teichuronic acid. [5] Furthermore, recent studies have suggested the critical role that techoic acid plays in the cell wall of B. subtilis, by acting as a phosphate reservoir and storing the necessary amount of inorganic phosphate in phosphate-starved conditions. [6]

The Pho regulon's effect on pathogenesis

Because bacteria use the Pho regulon to maintain homeostasis of Pi, it has the added effect of being used to control other genes. Many of the other genes activated or repressed by the Pho regulon cause virulence in bacterial pathogens. Three ways that this regulon effects virulence and pathogenicity are toxin production, biofilm formation, and acid tolerance. [2]

Toxin production

Pseudomonas aeruginosa is a known opportunistic pathogen. [2] One of its virulence factors is its ability to produce pyocyanin, a toxin released to kill both microbes and mammalian cells alike. The pyocyanin production occurs when activated by PhoB. [2] This implies that P. aeruginosa uses the low Pi as a signal that the host has been damaged and to start producing toxin to improve chances of its survival.

In contrast to P. aeruginosa, Vibrio cholerae has its toxin genes repressed by PhoB. It is thought that PhoB in V. cholerae is activated when Pi is low to prevent the production of toxins. [7] It could be activated by other signals in the environment, [7] but it has been shown that PhoB directly inhibits the toxins production by binding to the tcpPH promoter and stopping the ToxR regulon from being activated. [7] Evidence supporting Pi as the signal is given by how the regulon is not repressed under high Pi conditions. The regulatory cascade is only repressed under low Pi conditions. [2]

Biofilm formation

Biofilms are a mixture of microorganisms, layered together and usually adhered to a surface. The advantages of a biofilm include resistance to environmental stresses, antibiotics, and the ability to more easily obtain nutrients. [2] PhoB is used to enhance biofilm formation in environments where Pi is not in sufficient supply. This has been shown in multiple microbes including Pseudomonas, V. cholera, and E. coli. [4] This is not always the effect of the Pho regulon as for other species in different environments it is more advantageous to not be in biofilm when Pi is low. In these cases PhoB represses biofilm formation. [2]

Acid tolerance

E. coli has a protein to protect other periplasmic proteins from low pH environments called the Asr protein. The gene responsible for this protein is PhoB-dependent, and can only be turned on when the Pho regulon is activated by low Pi concentration. [8] Synthesis of the Asr protein imparts acid shock resistance to E. coli enabling it to survive in environments like the stomach which has a low pH. [2] Many acid tolerance genes are induced by more than just the low pH environment and require other environmental signals to be present in order to be activated. These specific nutrients being present or in low concentrations, anaerobiosis, and host-produced factors. [8]

Related Research Articles

<span class="mw-page-title-main">Biofilm</span> Aggregation of bacteria or cells on a surface

A biofilm is a syntrophic community of microorganisms in which cells stick to each other and often also to a surface. These adherent cells become embedded within a slimy extracellular matrix that is composed of extracellular polymeric substances (EPSs). The cells within the biofilm produce the EPS components, which are typically a polymeric combination of extracellular polysaccharides, proteins, lipids and DNA. Because they have a three-dimensional structure and represent a community lifestyle for microorganisms, they have been metaphorically described as "cities for microbes".

In biology, quorum sensing or quorum signaling (QS) is the ability to detect and respond to cell population density by gene regulation. Quorum sensing is a type of cellular signaling, and more specifically can be considered a type of paracrine signaling. However, it also contains traits of both autocrine signaling: a cell produces both the autoinducer molecule and the receptor for the autoinducer. As one example, QS enables bacteria to restrict the expression of specific genes to the high cell densities at which the resulting phenotypes will be most beneficial, especially for phenotypes that would be ineffective at low cell densities and therefore too energetically costly to express. Many species of bacteria use quorum sensing to coordinate gene expression according to the density of their local population. In a similar fashion, some social insects use quorum sensing to determine where to nest. Quorum sensing in pathogenic bacteria activates host immune signaling and prolongs host survival, by limiting the bacterial intake of nutrients, such as tryptophan, which further is converted to serotonin. As such, quorum sensing allows a commensal interaction between host and pathogenic bacteria. Quorum sensing may also be useful for cancer cell communications.

<i>Pseudomonas aeruginosa</i> Species of bacterium

Pseudomonas aeruginosa is a common encapsulated, Gram-negative, aerobic–facultatively anaerobic, rod-shaped bacterium that can cause disease in plants and animals, including humans. A species of considerable medical importance, P. aeruginosa is a multidrug resistant pathogen recognized for its ubiquity, its intrinsically advanced antibiotic resistance mechanisms, and its association with serious illnesses – hospital-acquired infections such as ventilator-associated pneumonia and various sepsis syndromes. P. aeruginosa is able to selectively inhibit various antibiotics from penetrating its outer membrane - and has high resistance to several antibiotics, according to the World Health Organization P. aeruginosa poses one of the greatest threats to humans in terms of antibiotic resistance.

Virulence factors are cellular structures, molecules and regulatory systems that enable microbial pathogens to achieve the following:

<i>trp</i> operon Operon that codes for the components for production of tryptophan

The trp operon is a group of genes that are transcribed together, encoding the enzymes that produce the amino acid tryptophan in bacteria. The trp operon was first characterized in Escherichia coli, and it has since been discovered in many other bacteria. The operon is regulated so that, when tryptophan is present in the environment, the genes for tryptophan synthesis are repressed.

The gene rpoS encodes the sigma factor sigma-38, a 37.8 kD protein in Escherichia coli. Sigma factors are proteins that regulate transcription in bacteria. Sigma factors can be activated in response to different environmental conditions. rpoS is transcribed in late exponential phase, and RpoS is the primary regulator of stationary phase genes. RpoS is a central regulator of the general stress response and operates in both a retroactive and a proactive manner: it not only allows the cell to survive environmental challenges, but it also prepares the cell for subsequent stresses (cross-protection). The transcriptional regulator CsgD is central to biofilm formation, controlling the expression of the curli structural and export proteins, and the diguanylate cyclase, adrA, which indirectly activates cellulose production. The rpoS gene most likely originated in the gammaproteobacteria.

fis E. coli gene

fis is an E. coli gene encoding the Fis protein. The regulation of this gene is more complex than most other genes in the E. coli genome, as Fis is an important protein which regulates expression of other genes. It is supposed that fis is regulated by H-NS, IHF and CRP. It also regulates its own expression (autoregulation). Fis is one of the most abundant DNA binding proteins in Escherichia coli under nutrient-rich growth conditions.

<span class="mw-page-title-main">MicA RNA</span>

The MicA RNA is a small non-coding RNA that was discovered in E. coli during a large scale screen. Expression of SraD is highly abundant in stationary phase, but low levels could be detected in exponentially growing cells as well.

<span class="mw-page-title-main">Guanosine pentaphosphate</span> Chemical compound

(p)ppGpp, guanosine pentaphosphate and tetraphosphate, also known as the "magic spot" nucleotides, are alarmones involved in the stringent response in bacteria that cause the inhibition of RNA synthesis when there is a shortage of amino acids. This inhibition by (p)ppGpp decreases translation in the cell, conserving amino acids present. Furthermore, ppGpp and pppGpp cause the up-regulation of many other genes involved in stress response such as the genes for amino acid uptake and biosynthesis.

Autoinducers are signaling molecules that are produced in response to changes in cell-population density. As the density of quorum sensing bacterial cells increases so does the concentration of the autoinducer. Detection of signal molecules by bacteria acts as stimulation which leads to altered gene expression once the minimal threshold is reached. Quorum sensing is a phenomenon that allows both Gram-negative and Gram-positive bacteria to sense one another and to regulate a wide variety of physiological activities. Such activities include symbiosis, virulence, motility, antibiotic production, and biofilm formation. Autoinducers come in a number of different forms depending on the species, but the effect that they have is similar in many cases. Autoinducers allow bacteria to communicate both within and between different species. This communication alters gene expression and allows bacteria to mount coordinated responses to their environments, in a manner that is comparable to behavior and signaling in higher organisms. Not surprisingly, it has been suggested that quorum sensing may have been an important evolutionary milestone that ultimately gave rise to multicellular life forms.

Osmoprotectants or compatible solutes are small organic molecules with neutral charge and low toxicity at high concentrations that act as osmolytes and help organisms survive extreme osmotic stress. Osmoprotectants can be placed in three chemical classes: betaines and associated molecules, sugars and polyols, and amino acids. These molecules accumulate in cells and balance the osmotic difference between the cell's surroundings and the cytosol. In plants, their accumulation can increase survival during stresses such as drought. In extreme cases, such as in bdelloid rotifers, tardigrades, brine shrimp, and nematodes, these molecules can allow cells to survive being completely dried out and let them enter a state of suspended animation called cryptobiosis.

<span class="mw-page-title-main">RsmX</span>

The rsmX gene is part of the Rsm/Csr family of non-coding RNAs (ncRNAs). Members of the Rsm/Csr family are present in a diverse range of bacteria, including Escherichia coli, Erwinia, Salmonella, Vibrio and Pseudomonas. These ncRNAs act by sequestering translational repressor proteins, called RsmA, activating expression of downstream genes that would normally be blocked by the repressors. Sequestering of target proteins is dependent upon exposed GGA motifs in the stem loops of the ncRNAs. Typically, the activated genes are involved in secondary metabolism, biofilm formation and motility.

Bacterial small RNAs are small RNAs produced by bacteria; they are 50- to 500-nucleotide non-coding RNA molecules, highly structured and containing several stem-loops. Numerous sRNAs have been identified using both computational analysis and laboratory-based techniques such as Northern blotting, microarrays and RNA-Seq in a number of bacterial species including Escherichia coli, the model pathogen Salmonella, the nitrogen-fixing alphaproteobacterium Sinorhizobium meliloti, marine cyanobacteria, Francisella tularensis, Streptococcus pyogenes, the pathogen Staphylococcus aureus, and the plant pathogen Xanthomonas oryzae pathovar oryzae. Bacterial sRNAs affect how genes are expressed within bacterial cells via interaction with mRNA or protein, and thus can affect a variety of bacterial functions like metabolism, virulence, environmental stress response, and structure.

<span class="mw-page-title-main">LuxR-type DNA-binding HTH domain</span>

In molecular biology, the LuxR-type DNA-binding HTH domain is a DNA-binding, helix-turn-helix (HTH) domain of about 65 amino acids. It is present in transcription regulators of the LuxR/FixJ family of response regulators. The domain is named after Vibrio fischeri luxR, a transcriptional activator for quorum-sensing control of luminescence. LuxR-type HTH domain proteins occur in a variety of organisms. The DNA-binding HTH domain is usually located in the C-terminal region of the protein; the N-terminal region often containing an autoinducer-binding domain or a response regulatory domain. Most luxR-type regulators act as transcription activators, but some can be repressors or have a dual role for different sites. LuxR-type HTH regulators control a wide variety of activities in various biological processes.

<span class="mw-page-title-main">Rhamnolipid</span> Chemical compound

Rhamnolipids are a class of glycolipid produced by Pseudomonas aeruginosa, amongst other organisms, frequently cited as bacterial surfactants. They have a glycosyl head group, in this case a rhamnose moiety, and a 3-(hydroxyalkanoyloxy)alkanoic acid (HAA) fatty acid tail, such as 3-hydroxydecanoic acid.

Bacterial morphological plasticity refers to changes in the shape and size that bacterial cells undergo when they encounter stressful environments. Although bacteria have evolved complex molecular strategies to maintain their shape, many are able to alter their shape as a survival strategy in response to protist predators, antibiotics, the immune response, and other threats.

Oxidation response is stimulated by a disturbance in the balance between the production of reactive oxygen species and antioxidant responses, known as oxidative stress. Active species of oxygen naturally occur in aerobic cells and have both intracellular and extracellular sources. These species, if not controlled, damage all components of the cell, including proteins, lipids and DNA. Hence cells need to maintain a strong defense against the damage. The following table gives an idea of the antioxidant defense system in bacterial system.

Contact-dependent growth inhibition (CDI) is a phenomenon where a bacterial cell may deliver a polymorphic toxin molecule into neighbouring bacterial cells upon direct cell-cell contact, causing growth arrest or cell death.

<span class="mw-page-title-main">Bacterial secretion system</span> Protein complexes present on the cell membranes of bacteria for secretion of substances

Bacterial secretion systems are protein complexes present on the cell membranes of bacteria for secretion of substances. Specifically, they are the cellular devices used by pathogenic bacteria to secrete their virulence factors to invade the host cells. They can be classified into different types based on their specific structure, composition and activity. Generally, proteins can be secreted through two different processes. One process is a one-step mechanism in which proteins from the cytoplasm of bacteria are transported and delivered directly through the cell membrane into the host cell. Another involves a two-step activity in which the proteins are first transported out of the inner cell membrane, then deposited in the periplasm, and finally through the outer cell membrane into the host cell.

Diffusible signal factor (DSF) is found in several gram-negative bacteria and play a role in the formation of biofilms, motility, virulence, and antibiotic resistance. Xanthomonas campestris was the first bacteria known to have DSF. The synthesis of the DSF can be seen in rpfF and rpfB enzymes. An understanding of the DSF signaling mechanism could lead to further disease control.

References

  1. Wanner, B. L.; Chang, B. D. (December 1987). "The phoBR operon in Escherichia coli K-12". Journal of Bacteriology. 169 (12): 5569–5574. doi:10.1128/jb.169.12.5569-5574.1987. ISSN   0021-9193. PMC   213987 . PMID   2824439.
  2. 1 2 3 4 5 6 7 8 9 10 11 Santos-Beneit, Fernando (2015-04-30). "The Pho regulon: a huge regulatory network in bacteria". Frontiers in Microbiology. 6: 402. doi: 10.3389/fmicb.2015.00402 . ISSN   1664-302X. PMC   4415409 . PMID   25983732.
  3. 1 2 3 4 5 Vershinina, O. A.; Znamenskaya, L. V. (2002). "The Pho Regulons of Bacteria". Microbiology. 71 (5): 497–511. doi:10.1023/a:1020547616096. ISSN   0026-2617. PMID   12449623. S2CID   36152299.
  4. 1 2 Monds, Russell D.; Newell, Peter D.; Schwartzman, Julia A.; O'Toole, George A. (2006-03-01). "Conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1". Applied and Environmental Microbiology. 72 (3): 1910–1924. Bibcode:2006ApEnM..72.1910M. doi:10.1128/AEM.72.3.1910-1924.2006. ISSN   0099-2240. PMC   1393216 . PMID   16517638.
  5. Liu, Wei; Hulett, F. Marion (1998). "Comparison of PhoP binding to the tuaA promoter with PhoP binding to other Pho-regulon promoters establishes a Bacillus subtilis Pho core binding site". Microbiology. 144 (5): 1443–1450. doi:10.1099/00221287-144-5-1443. ISSN   1350-0872. PMID   9611818. S2CID   7062262.
  6. Bhavsar, Amit P.; Erdman, Laura K.; Schertzer, Jeffrey W.; Brown, Eric D. (2004-12-01). "Teichoic Acid Is an Essential Polymer in Bacillus subtilis That Is Functionally Distinct from Teichuronic Acid". Journal of Bacteriology. 186 (23): 7865–7873. doi:10.1128/JB.186.23.7865-7873.2004. ISSN   0021-9193. PMC   529093 . PMID   15547257.
  7. 1 2 3 Pratt, Jason T.; Ismail, Ayman M.; Camilli, Andrew (September 2010). "PhoB regulates both environmental and virulence gene expression in Vibrio cholerae". Molecular Microbiology. 77 (6): 1595–1605. doi:10.1111/j.1365-2958.2010.07310.x. ISSN   0950-382X. PMC   2981138 . PMID   20659293.
  8. 1 2 Sužiedėlienė, Edita; Sužiedėlis, Kęstutis; Garbenčiūtė, Vaida; Normark, Staffan (April 1999). "The Acid-Inducible asr Gene in Escherichia coli: Transcriptional Control by the phoBR Operon". Journal of Bacteriology. 181 (7): 2084–2093. doi:10.1128/JB.181.7.2084-2093.1999. ISSN   0021-9193. PMC   93620 . PMID   10094685.