Piperlonguminine

Last updated
Piperlonguminine
Piperlonguminine.svg
Names
Preferred IUPAC name
(2E,4E)-5-(2H-1,3-Benzodioxol-5-yl)-N-(2-methylpropyl)penta-2,4-dienamide
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
PubChem CID
UNII
  • InChI=1S/C16H19NO3/c1-12(2)10-17-16(18)6-4-3-5-13-7-8-14-15(9-13)20-11-19-14/h3-9,12H,10-11H2,1-2H3,(H,17,18)/b5-3+,6-4+
    Key: WHAAPCGHVWVUEX-GGWOSOGESA-N
  • InChI=1/C16H19NO3/c1-12(2)10-17-16(18)6-4-3-5-13-7-8-14-15(9-13)20-11-19-14/h3-9,12H,10-11H2,1-2H3,(H,17,18)/b5-3+,6-4+
    Key: WHAAPCGHVWVUEX-GGWOSOGEBI
  • CC(C)CNC(=O)/C=C/C=C/C1=CC2=C(C=C1)OCO2
Properties
C16H19NO3
Molar mass 273.332 g·mol−1
Melting point 167-169 °C (332.6-336.2 °F; 440-442K)
Solubility DMSO
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Piperlonguminine is a alkaloid amide isolated from Piper longum . [1] [2]

Related Research Articles

<span class="mw-page-title-main">Geldanamycin</span> Chemical compound

Geldanamycin is a 1,4-benzoquinone ansamycin antitumor antibiotic that inhibits the function of Hsp90 by binding to the unusual ADP/ATP-binding pocket of the protein. HSP90 client proteins play important roles in the regulation of the cell cycle, cell growth, cell survival, apoptosis, angiogenesis and oncogenesis.

<span class="mw-page-title-main">Drosha</span> Ribonuclease III enzyme

Drosha is a Class 2 ribonuclease III enzyme that in humans is encoded by the DROSHA gene. It is the primary nuclease that executes the initiation step of miRNA processing in the nucleus. It works closely with DGCR8 and in correlation with Dicer. It has been found significant in clinical knowledge for cancer prognosis and HIV-1 replication.

<span class="mw-page-title-main">STAT3</span> Protein-coding gene in the species Homo sapiens

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor which in humans is encoded by the STAT3 gene. It is a member of the STAT protein family.

<span class="mw-page-title-main">RUNX3</span> Protein-coding gene in humans

Runt-related transcription factor 3 is a protein that in humans is encoded by the RUNX3 gene.

<span class="mw-page-title-main">CD99</span> Protein-coding gene in humans

CD99 antigen, also known as MIC2 or single-chain type-1 glycoprotein, is a heavily O-glycosylated transmembrane protein that is encoded by the CD99 gene in humans. The protein has a mass of 32 kD. Unusually for a gene present on the X chromosome, the CD99 gene does not undergo X inactivation, and it was the first such pseudoautosomal gene to be discovered in humans.

<span class="mw-page-title-main">Retinoid X receptor gamma</span> Protein-coding gene in the species Homo sapiens

Retinoid X receptor gamma (RXR-gamma), also known as NR2B3 is a nuclear receptor that in humans is encoded by the RXRG gene.

<span class="mw-page-title-main">Brain-specific angiogenesis inhibitor 1</span> Protein-coding gene in the species Homo sapiens

Brain-specific angiogenesis inhibitor 1 is a protein that in humans is encoded by the BAI1 gene. It is a member of the adhesion-GPCR family of receptors.

<span class="mw-page-title-main">GPR31</span> Protein in humans

G-protein coupled receptor 31 also known as 12-(S)-HETE receptor is a protein that in humans is encoded by the GPR31 gene. The human gene is located on chromosome 6q27 and encodes a G-protein coupled receptor protein composed of 319 amino acids.

Leukotriene B<sub>4</sub> receptor 2 Protein-coding gene in the species Homo sapiens

Leukotriene B4 receptor 2, also known as BLT2, BLT2 receptor, and BLTR2, is an Integral membrane protein that is encoded by the LTB4R2 gene in humans and the Ltbr2 gene in mice.

<span class="mw-page-title-main">PAK4</span> Mammalian protein found in Homo sapiens

Serine/threonine-protein kinase PAK 4 is an enzyme that in humans is encoded by the PAK4 gene.

<span class="mw-page-title-main">N-alpha-acetyltransferase 10</span> Protein-coding gene in the species Homo sapiens

N-alpha-acetyltransferase 10 (NAA10) also known as NatA catalytic subunit Naa10 and arrest-defective protein 1 homolog A (ARD1A) is an enzyme subunit that in humans is encoded NAA10 gene. Together with its auxiliary subunit Naa15, Naa10 constitutes the NatA complex that specifically catalyzes the transfer of an acetyl group from acetyl-CoA to the N-terminal primary amino group of certain proteins. In higher eukaryotes, 5 other N-acetyltransferase (NAT) complexes, NatB-NatF, have been described that differ both in substrate specificity and subunit composition.

<span class="mw-page-title-main">KIF4A</span> Protein-coding gene in the species Homo sapiens

Kinesin family member 4A is a protein that in humans is encoded by the KIF4A gene.

<span class="mw-page-title-main">KMT2C</span> Protein-coding gene in the species Homo sapiens

Lysine N-methyltransferase 2C (KMT2C) also known as myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3) is an enzyme that in humans is encoded by the KMT2C gene.

<span class="mw-page-title-main">KMT2D</span> Protein-coding gene in the species Homo sapiens

Histone-lysine N-methyltransferase 2D (KMT2D), also known as MLL4 and sometimes MLL2 in humans and Mll4 in mice, is a major mammalian histone H3 lysine 4 (H3K4) mono-methyltransferase. It is part of a family of six Set1-like H3K4 methyltransferases that also contains KMT2A, KMT2B, KMT2C, KMT2F, and KMT2G.

<span class="mw-page-title-main">JARID2</span> Protein-coding gene in the species Homo sapiens

Protein Jumonji is a protein that in humans is encoded by the JARID2 gene. JARID2 is a member of the alpha-ketoglutarate-dependent hydroxylase superfamily.

<span class="mw-page-title-main">12-Hydroxyeicosatetraenoic acid</span> Chemical compound

12-Hydroxyeicosatetraenoic acid (12-HETE) is a derivative of the 20 carbon polyunsaturated fatty acid, arachidonic acid, containing a hydroxyl residue at carbon 12 and a 5Z,8Z,10E,14Z Cis–trans isomerism configuration (Z=cis, E=trans) in its four double bonds. It was first found as a product of arachidonic acid metabolism made by human and bovine platelets through their 12S-lipoxygenase (i.e. ALOX12) enzyme(s). However, the term 12-HETE is ambiguous in that it has been used to indicate not only the initially detected "S" stereoisomer, 12S-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12(S)-HETE or 12S-HETE), made by platelets, but also the later detected "R" stereoisomer, 12(R)-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (also termed 12(R)-HETE or 12R-HETE) made by other tissues through their 12R-lipoxygenase enzyme, ALOX12B. The two isomers, either directly or after being further metabolized, have been suggested to be involved in a variety of human physiological and pathological reactions. Unlike hormones which are secreted by cells, travel in the circulation to alter the behavior of distant cells, and thereby act as Endocrine signalling agents, these arachidonic acid metabolites act locally as Autocrine signalling and/or Paracrine signaling agents to regulate the behavior of their cells of origin or of nearby cells, respectively. In these roles, they may amplify or dampen, expand or contract cellular and tissue responses to disturbances.

<span class="mw-page-title-main">Gintonin</span> Protein found in [[ginseng]]

Gintonin is a glycolipoprotein fraction isolated from ginseng. The non-saponin ingredient was designated as gintonin, where gin was derived from ginseng, ton from the tonic effects of ginseng, and in from protein. The main component of gintonin is a complex of lysophosphatidic acids (LPA) and ginseng proteins such as ginseng major latex-like protein151 (GLP151) and ginseng ribonuclease-like storage protein.

In molecular biology mir-344 microRNA is a short RNA molecule. MicroRNAs function to regulate the expression levels of other genes by several mechanisms. The pre-miR-344 is transcribed directly as a precursor microRNA hairpin and thus contains a 5' m7G-cap.

Lee Byung-heon (Korean: 이병헌) is a Professor of Biochemistry and Cell Biology in the School of Medicine at Kyungpook National University (KNU), South Korea. He received his M.D. license from Korean Medical Association in 1989. He received his B.S. from the School of Medicine, KNU in 1989, and his M.S. and Ph.D. in Biochemistry from KNU in 1991 and 1995. He was an Assistant Professor in School of Medicine at Dongguk University in 1996-2001 and a Visiting Investigator in the Sanford-Burnham Medical Research Institute, La Jolla, United States in 2001-2003. He joined KNU in 2003. He is currently a member of Korean Society for Biochemistry and Molecular Biology, the American Association for Cancer Research, and the American Society of Molecular Imaging. His main research interest is “discovery of tissue-specific homing peptides using phage display and their applications to molecular imaging and targeted therapy”. He is currently carrying out projects for the identification of homing peptides to tumor and atherosclerotic plaque and of phosphatidylserine- and blood clotting factor XIIIa-specific peptide ligands. He has published over 30 peer-reviewed papers, book chapters, and review articles. He has also filed several patents.

<span class="mw-page-title-main">FOXO6</span> Protein-coding gene in the species Homo sapiens

Forkhead box O6 is a protein that in humans is encoded by the FOXO6 gene.

References

  1. Kim, KS; Kim, JA; Eom, SY; Lee, SH; Min, KR; Kim, Y (February 2006). "Inhibitory effect of piperlonguminine on melanin production in melanoma B16 cell line by downregulation of tyrosinase expression". Pigment Cell Research. 19 (1): 90–8. doi:10.1111/j.1600-0749.2005.00281.x. PMID   16420250.
  2. Lee, W; Yoo, H; Kim, J. A; Lee, S; Jee, J. G; Lee, M. Y; Lee, Y. M; Bae, J. S (2013). "Barrier protective effects of piperlonguminine in LPS-induced inflammation in vitro and in vivo". Food and Chemical Toxicology. 58: 149–57. doi:10.1016/j.fct.2013.04.027. PMID   23619565.