In mathematics, a planar Riemann surface (or schlichtartig Riemann surface) is a Riemann surface sharing the topological properties of a connected open subset of the Riemann sphere. They are characterized by the topological property that the complement of every closed Jordan curve in the Riemann surface has two connected components. An equivalent characterization is the differential geometric property that every closed differential 1-form of compact support is exact. Every simply connected Riemann surface is planar. The class of planar Riemann surfaces was studied by Koebe who proved in 1910, as a generalization of the uniformization theorem, that every such surface is conformally equivalent to either the Riemann sphere or the complex plane with slits parallel to the real axis removed.
Koebe's Theorem. A compact planar Riemann surface X is conformally equivalent to the Riemann sphere. A non-compact planar Riemann surface X is conformally equivalent either to the complex plane or to the complex plane with finitely many closed intervals parallel to the real axis removed. [6] [7]
Since G does not contain the infinity at ∞, the construction can equally be applied to e–i θG taking with horizontal slits removed to give a uniformizer fθ. The uniformizer ei θgθ(e−iθz) now takes G to with parallel slits removed at an angle of θ to the x-axis. In particular θ = π/2 leads to a uniformizer fπ/2(z) for with vertical slits removed. By uniqueness fθ(z) = eiθ [cos θ f0(z) − i sin θ fπ/2(z)]. [16] [17] [18]
Theorem. Any simply connected Riemann surface is conformally equivalent to either (1) the Riemann sphere (elliptic), (2) the complex plane (parabolic) or (3) the unit disk (hyperbolic). [19] [20] [21]
Corollary (Riemann mapping theorem). Any connected and simply connected open domain in the complex plane with at least two boundary points is conformally equivalent to the unit disk. [25] [26]
Koebe's uniformization theorem for planar Riemann surfaces implies the uniformization theorem for simply connected Riemann surface. Indeed, the slit domain is either the whole Riemann sphere; or the Riemann sphere less a point, so the complex plane after applying a Möbius transformation to move the point to infinity; or the Riemann sphere less a closed interval parallel to the real axis. After applying a Möbius transformation, the closed interval can be mapped to [–1,1]. It is therefore conformally equivalent to the unit disk, since the conformal mapping g(z) = (z + z−1)/2 maps the unit disk onto C \ [−1,1].
For a domain G obtained by excising ∪ {∞} from finitely many disjoint closed disks, the conformal mapping onto a slit horizontal or vertical domains can be made explicit and presented in closed form. Thus the Poisson kernel on any of the disks can be used to solve the Dirichlet problem on the boundary of the disk as described in Katznelson (2004). Elementary properties such as the maximum principle and the Schwarz reflection principle apply as described in Ahlfors (1978). For a specific disk, the group of Möbius transformations stabilizing the boundary, a copy of SU(1,1), acts equivariantly on the corresponding Poisson kernel. For a fixed a in G, the Dirichlet problem with boundary value log |z − a| can be solved using the Poisson kernels. It yields a harmonic function h(z) on G. The difference g(z,a) = h(z) − log |z − a| is called the Green's function with pole at a. It has the important symmetry property that g(z,w) = g(w,z), so it is harmonic in both variables when it makes sense. Hence, if a = u + iv, the harmonic function ∂ug(z,a) has harmonic conjugate − ∂vg(z,a). On the other hand, by the Dirichlet problem, for each ∂Di there is a unique harmonic function ωi on G equal to 1 on ∂Di and 0 on ∂Dj for j ≠ i (the so-called harmonic measure of ∂Di). The ωi's sum to 1. The harmonic function ∂vg(z,a) on D \ {a} is multi-valued: its argument changes by an integer multiple of 2π around each of the boundary disks Di. The problem of multi-valuedness is resolved by choosing λi's so that ∂vg(z,a) + Σ λi ∂v ωi(z) has no change in argument around every ∂Dj. By construction the horizontal slit mappingp(z) = (∂u + i ∂v) [g(z,a)+ Σ λi ωi(z)] is holomorphic in G except at a where it has a pole with residue 1. Similarly the vertical slit mapping is obtained by setting q(z) = (− ∂v + i ∂u) [g(z,a)+ Σ μi ωi(z)]; the mapping q(z) is holomorphic except for a pole at a with residue 1. [27]
Koebe's theorem also implies that every finitely connected bounded region in the plane is conformally equivalent to the open unit disk with finitely many smaller disjoint closed disks removed, or equivalently the extended complex plane with finitely many disjoint closed disks removed. This result is known as Koebe's "Kreisnormierungs" theorem.
Following Goluzin (1969) it can be deduced from the parallel slit theorem using a variant of Carathéodory's kernel theorem and Brouwer's theorem on invariance of domain. Goluzin's method is a simplification of Koebe's original argument.
In fact every conformal mapping of such a circular domain onto another circular domain is necessarily given by a Möbius transformation. To see this, it can be assumed that both domains contain the point ∞ and that the conformal mapping f carries ∞ onto ∞. The mapping functions can be continued continuously to the boundary circles. Successive inversions in these boundary circles generate Schottky groups. The union of the domains under the action of both Schottky groups define dense open subsets of the Riemann sphere. By the Schwarz reflection principle, f can be extended to a conformal map between these open dense sets. Their complements are the limit sets of the Schottky groups. They are compact and have measure zero. The Koebe distortion theorem can then be used to prove that f extends continuously to a conformal map of the Riemann sphere onto itself. Consequently, f is given by a Möbius transformation. [28]
Now the space of circular domains with n circles has dimension 3n – 2 (fixing a point on one circle) as does the space of parallel slit domains with n parallel slits (fixing an endpoint point on a slit). Both spaces are path connected. The parallel slit theorem gives a map from one space to the other. It is one-one because conformal maps between circular domains are given by Möbius transformations. It is continuous by the convergence theorem for kernels. By invariance of domain, the map carries open sets onto open sets. The convergence theorem for kernels can be applied to the inverse of the map: it proves that if a sequence of slit domains is realisable by circular domains and the slit domains tend to a slit domain, then the corresponding sequence of circular domains converges to a circular domain; moreover the associated conformal mappings also converge. So the map must be onto by path connectedness of the target space. [29]
An account of Koebe's original proof of uniformization by circular domains can be found in Bieberbach (1953). Uniformization can also be proved using the Beltrami equation. Schiffer & Hawley (1962) constructed the conformal mapping to a circular domain by minimizing a nonlinear functional—a method that generalized the Dirichlet principle. [30]
Koebe also described two iterative schemes for constructing the conformal mapping onto a circular domain; these are described in Gaier (1964) and Henrici (1986) (rediscovered by engineers in aeronautics, Halsey (1979), they are highly efficient). In fact suppose a region on the Riemann sphere is given by the exterior of n disjoint Jordan curves and that ∞ is an exterior point. Let f1 be the Riemann mapping sending the outside of the first curve onto the outside of the unit disk, fixing ∞. The Jordan curves are transformed by f1 to n new curves. Now do the same for the second curve to get f2 with another new set of n curves. Continue in this way until fn has been defined. Then restart the process on the first of the new curves and continue. The curves gradually tend to fixed circles and for large N the map fN approaches the identity; and the compositions fN ∘ fN−1 ∘ ⋅⋅⋅ ∘ f2 ∘ f1 tend uniformly on compacta to the uniformizing map. [31]
Uniformization by parallel slit domains and by circle domains were proved by variational principles via Richard Courant starting in 1910 and are described in Courant (1950) .
Uniformization by parallel slit domains holds for arbitrary connected open domains in C; Koebe (1908) conjectured (Koebe's "Kreisnormierungsproblem") that a similar statement was true for uniformization by circular domains. He & Schramm (1993) proved Koebe's conjecture when the number of boundary components is countable; although proved for wide classes of domains, the conjecture remains open when the number of boundary components is uncountable. Koebe (1936) also considered the limiting case of osculating or tangential circles which has continued to be actively studied in the theory of circle packing.
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, applied mathematics; as well as in physics, including the branches of hydrodynamics, thermodynamics, quantum mechanics, and twistor theory. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering.
In the field of complex analysis in mathematics, the Cauchy–Riemann equations, named after Augustin Cauchy and Bernhard Riemann, consist of a system of two partial differential equations which form a necessary and sufficient condition for a complex function of a complex variable to be complex differentiable.
In complex analysis, the Riemann mapping theorem states that if is a non-empty simply connected open subset of the complex number plane which is not all of , then there exists a biholomorphic mapping from onto the open unit disk
In mathematics, the Cauchy integral theorem in complex analysis, named after Augustin-Louis Cauchy, is an important statement about line integrals for holomorphic functions in the complex plane. Essentially, it says that if is holomorphic in a simply connected domain Ω, then for any simply closed contour in Ω, that contour integral is zero.
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together.
The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It relates the complex analysis of a connected compact Riemann surface with the surface's purely topological genus g, in a way that can be carried over into purely algebraic settings.
In mathematics, the uniformization theorem says that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generalization of the Riemann mapping theorem from simply connected open subsets of the plane to arbitrary simply connected Riemann surfaces.
In complex analysis, a branch of mathematics, Morera's theorem, named after Giacinto Morera, gives an important criterion for proving that a function is holomorphic.
In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations. The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic.
In mathematics, a fundamental polygon can be defined for every compact Riemann surface of genus greater than 0. It encodes not only the topology of the surface through its fundamental group but also determines the Riemann surface up to conformal equivalence. By the uniformization theorem, every compact Riemann surface has simply connected universal covering surface given by exactly one of the following:
In mathematics, Carathéodory's theorem is a theorem in complex analysis, named after Constantin Carathéodory, which extends the Riemann mapping theorem. The theorem, first proved in 1913, states that any conformal mapping sending the unit disk to some region in the complex plane bounded by a Jordan curve extends continuously to a homeomorphism from the unit circle onto the Jordan curve. The result is one of Carathéodory's results on prime ends and the boundary behaviour of univalent holomorphic functions.
In mathematical complex analysis, a quasiconformal mapping, introduced by Grötzsch (1928) and named by Ahlfors (1935), is a homeomorphism between plane domains which to first order takes small circles to small ellipses of bounded eccentricity.
Geometric function theory is the study of geometric properties of analytic functions. A fundamental result in the theory is the Riemann mapping theorem.
In mathematics, in the field of algebraic geometry, the period mapping relates families of Kähler manifolds to families of Hodge structures.
The circle packing theorem describes the possible tangency relations between circles in the plane whose interiors are disjoint. A circle packing is a connected collection of circles whose interiors are disjoint. The intersection graph of a circle packing is the graph having a vertex for each circle, and an edge for every pair of circles that are tangent. If the circle packing is on the plane, or, equivalently, on the sphere, then its intersection graph is called a coin graph; more generally, intersection graphs of interior-disjoint geometric objects are called tangency graphs or contact graphs. Coin graphs are always connected, simple, and planar. The circle packing theorem states that these are the only requirements for a graph to be a coin graph:
In mathematics, the Schoenflies problem or Schoenflies theorem, of geometric topology is a sharpening of the Jordan curve theorem by Arthur Schoenflies. For Jordan curves in the plane it is often referred to as the Jordan–Schoenflies theorem.
In mathematics, the conformal radius is a way to measure the size of a simply connected planar domain D viewed from a point z in it. As opposed to notions using Euclidean distance, this notion is well-suited to use in complex analysis, in particular in conformal maps and conformal geometry.
In mathematics, the Beltrami equation, named after Eugenio Beltrami, is the partial differential equation
In mathematics, Sobolev spaces for planar domains are one of the principal techniques used in the theory of partial differential equations for solving the Dirichlet and Neumann boundary value problems for the Laplacian in a bounded domain in the plane with smooth boundary. The methods use the theory of bounded operators on Hilbert space. They can be used to deduce regularity properties of solutions and to solve the corresponding eigenvalue problems.
In mathematics, differential forms on a Riemann surface are an important special case of the general theory of differential forms on smooth manifolds, distinguished by the fact that the conformal structure on the Riemann surface intrinsically defines a Hodge star operator on 1-forms without specifying a Riemannian metric. This allows the use of Hilbert space techniques for studying function theory on the Riemann surface and in particular for the construction of harmonic and holomorphic differentials with prescribed singularities. These methods were first used by Hilbert (1909) in his variational approach to the Dirichlet principle, making rigorous the arguments proposed by Riemann. Later Weyl (1940) found a direct approach using his method of orthogonal projection, a precursor of the modern theory of elliptic differential operators and Sobolev spaces. These techniques were originally applied to prove the uniformization theorem and its generalization to planar Riemann surfaces. Later they supplied the analytic foundations for the harmonic integrals of Hodge (1941). This article covers general results on differential forms on a Riemann surface that do not rely on any choice of Riemannian structure.