In mathematics, a planar Riemann surface (or schlichtartig Riemann surface) is a Riemann surface sharing the topological properties of a connected open subset of the Riemann sphere. They are characterized by the topological property that the complement of every closed Jordan curve in the Riemann surface has two connected components. An equivalent characterization is the differential geometric property that every closed differential 1-form of compact support is exact. Every simply connected Riemann surface is planar. The class of planar Riemann surfaces was studied by Koebe who proved in 1910, as a generalization of the uniformization theorem, that every such surface is conformally equivalent to either the Riemann sphere or the complex plane with slits parallel to the real axis removed.
Koebe's Theorem. A compact planar Riemann surface X is conformally equivalent to the Riemann sphere. A non-compact planar Riemann surface X is conformally equivalent either to the complex plane or to the complex plane with finitely many closed intervals parallel to the real axis removed. [6] [7]
Since G does not contain the infinity at ∞, the construction can equally be applied to e–i θG taking with horizontal slits removed to give a uniformizer fθ. The uniformizer ei θgθ(e−iθz) now takes G to with parallel slits removed at an angle of θ to the x-axis. In particular θ = π/2 leads to a uniformizer fπ/2(z) for with vertical slits removed. By uniqueness fθ(z) = eiθ [cos θ f0(z) − i sin θ fπ/2(z)]. [16] [17] [18]
Theorem. Any simply connected Riemann surface is conformally equivalent to either (1) the Riemann sphere (elliptic), (2) the complex plane (parabolic) or (3) the unit disk (hyperbolic). [19] [20] [21]
Corollary (Riemann mapping theorem). Any connected and simply connected open domain in the complex plane with at least two boundary points is conformally equivalent to the unit disk. [25] [26]
Koebe's uniformization theorem for planar Riemann surfaces implies the uniformization theorem for simply connected Riemann surface. Indeed, the slit domain is either the whole Riemann sphere; or the Riemann sphere less a point, so the complex plane after applying a Möbius transformation to move the point to infinity; or the Riemann sphere less a closed interval parallel to the real axis. After applying a Möbius transformation, the closed interval can be mapped to [–1,1]. It is therefore conformally equivalent to the unit disk, since the conformal mapping g(z) = (z + z−1)/2 maps the unit disk onto C \ [−1,1].
For a domain G obtained by excising ∪ {∞} from finitely many disjoint closed disks, the conformal mapping onto a slit horizontal or vertical domains can be made explicit and presented in closed form. Thus the Poisson kernel on any of the disks can be used to solve the Dirichlet problem on the boundary of the disk as described in Katznelson (2004). Elementary properties such as the maximum principle and the Schwarz reflection principle apply as described in Ahlfors (1978). For a specific disk, the group of Möbius transformations stabilizing the boundary, a copy of SU(1,1), acts equivariantly on the corresponding Poisson kernel. For a fixed a in G, the Dirichlet problem with boundary value log |z − a| can be solved using the Poisson kernels. It yields a harmonic function h(z) on G. The difference g(z,a) = h(z) − log |z − a| is called the Green's function with pole at a. It has the important symmetry property that g(z,w) = g(w,z), so it is harmonic in both variables when it makes sense. Hence, if a = u + iv, the harmonic function ∂ug(z,a) has harmonic conjugate − ∂vg(z,a). On the other hand, by the Dirichlet problem, for each ∂Di there is a unique harmonic function ωi on G equal to 1 on ∂Di and 0 on ∂Dj for j ≠ i (the so-called harmonic measure of ∂Di). The ωi's sum to 1. The harmonic function ∂vg(z,a) on D \ {a} is multi-valued: its argument changes by an integer multiple of 2π around each of the boundary disks Di. The problem of multi-valuedness is resolved by choosing λi's so that ∂vg(z,a) + Σ λi ∂v ωi(z) has no change in argument around every ∂Dj. By construction the horizontal slit mappingp(z) = (∂u + i ∂v) [g(z,a)+ Σ λi ωi(z)] is holomorphic in G except at a where it has a pole with residue 1. Similarly the vertical slit mapping is obtained by setting q(z) = (− ∂v + i ∂u) [g(z,a)+ Σ μi ωi(z)]; the mapping q(z) is holomorphic except for a pole at a with residue 1. [27]
Koebe's theorem also implies that every finitely connected bounded region in the plane is conformally equivalent to the open unit disk with finitely many smaller disjoint closed disks removed, or equivalently the extended complex plane with finitely many disjoint closed disks removed. This result is known as Koebe's "Kreisnormierungs" theorem.
Following Goluzin (1969) it can be deduced from the parallel slit theorem using a variant of Carathéodory's kernel theorem and Brouwer's theorem on invariance of domain. Goluzin's method is a simplification of Koebe's original argument.
In fact every conformal mapping of such a circular domain onto another circular domain is necessarily given by a Möbius transformation. To see this, it can be assumed that both domains contain the point ∞ and that the conformal mapping f carries ∞ onto ∞. The mapping functions can be continued continuously to the boundary circles. Successive inversions in these boundary circles generate Schottky groups. The union of the domains under the action of both Schottky groups define dense open subsets of the Riemann sphere. By the Schwarz reflection principle, f can be extended to a conformal map between these open dense sets. Their complements are the limit sets of the Schottky groups. They are compact and have measure zero. The Koebe distortion theorem can then be used to prove that f extends continuously to a conformal map of the Riemann sphere onto itself. Consequently, f is given by a Möbius transformation. [28]
Now the space of circular domains with n circles has dimension 3n – 2 (fixing a point on one circle) as does the space of parallel slit domains with n parallel slits (fixing an endpoint point on a slit). Both spaces are path connected. The parallel slit theorem gives a map from one space to the other. It is one-one because conformal maps between circular domains are given by Möbius transformations. It is continuous by the convergence theorem for kernels. By invariance of domain, the map carries open sets onto open sets. The convergence theorem for kernels can be applied to the inverse of the map: it proves that if a sequence of slit domains is realisable by circular domains and the slit domains tend to a slit domain, then the corresponding sequence of circular domains converges to a circular domain; moreover the associated conformal mappings also converge. So the map must be onto by path connectedness of the target space. [29]
An account of Koebe's original proof of uniformization by circular domains can be found in Bieberbach (1953). Uniformization can also be proved using the Beltrami equation. Schiffer & Hawley (1962) constructed the conformal mapping to a circular domain by minimizing a nonlinear functional—a method that generalized the Dirichlet principle. [30]
Koebe also described two iterative schemes for constructing the conformal mapping onto a circular domain; these are described in Gaier (1964) and Henrici (1986) (rediscovered by engineers in aeronautics, Halsey (1979), they are highly efficient). In fact suppose a region on the Riemann sphere is given by the exterior of n disjoint Jordan curves and that ∞ is an exterior point. Let f1 be the Riemann mapping sending the outside of the first curve onto the outside of the unit disk, fixing ∞. The Jordan curves are transformed by f1 to n new curves. Now do the same for the second curve to get f2 with another new set of n curves. Continue in this way until fn has been defined. Then restart the process on the first of the new curves and continue. The curves gradually tend to fixed circles and for large N the map fN approaches the identity; and the compositions fN ∘ fN−1 ∘ ⋅⋅⋅ ∘ f2 ∘ f1 tend uniformly on compacta to the uniformizing map. [31]
Uniformization by parallel slit domains and by circle domains were proved by variational principles via Richard Courant starting in 1910 and are described in Courant (1950).
Uniformization by parallel slit domains holds for arbitrary connected open domains in C; Koebe (1908) conjectured (Koebe's "Kreisnormierungsproblem") that a similar statement was true for uniformization by circular domains. He & Schramm (1993) proved Koebe's conjecture when the number of boundary components is countable; although proved for wide classes of domains, the conjecture remains open when the number of boundary components is uncountable. Koebe (1936) also considered the limiting case of osculating or tangential circles which has continued to be actively studied in the theory of circle packing.
{{citation}}
: ISBN / Date incompatibility (help){{citation}}
: ISBN / Date incompatibility (help)