Plate heat exchanger

Last updated

A plate heat exchanger is a type of heat exchanger that uses metal plates to transfer heat between two fluids. This has a major advantage over a conventional heat exchanger in that the fluids are exposed to a much larger surface area because the fluids are spread out over the plates. This facilitates the transfer of heat, and greatly increases the speed of the temperature change. Plate heat exchangers are now common and very small brazed versions are used in the hot-water sections of millions of combination boilers. The high heat transfer efficiency for such a small physical size has increased the domestic hot water (DHW) flowrate of combination boilers. The small plate heat exchanger has made a great impact in domestic heating and hot-water. Larger commercial versions use gaskets between the plates, whereas smaller versions tend to be brazed.

Contents

The concept behind a heat exchanger is the use of pipes or other containment vessels to heat or cool one fluid by transferring heat between it and another fluid. In most cases, the exchanger consists of a coiled pipe containing one fluid that passes through a chamber containing another fluid. The walls of the pipe are usually made of metal, or another substance with a high thermal conductivity, to facilitate the interchange, whereas the outer casing of the larger chamber is made of a plastic or coated with thermal insulation, to discourage heat from escaping from the exchanger.

The world's first commercially viable plate heat exchanger (PHE) was invented by Dr Richard Seligman in 1923 and revolutionized methods of indirect heating and cooling of fluids. Dr Richard Seligman founded APV in 1910 as the Aluminum Plant & Vessel Company Limited, a specialist fabricating firm supplying welded vessels to the brewery and vegetable oil trades. Also, it set the norm for today's computer-designed thin metal plate Heat Exchangers that are used all over the world. [1]

Design of plate and frame heat exchangers

Schematic conceptual diagram of a plate and frame heat exchanger. Plate frame 1.svg
Schematic conceptual diagram of a plate and frame heat exchanger.
An individual plate for a heat exchanger Plate frame 2.png
An individual plate for a heat exchanger

The plate heat exchanger (PHE) is a specialized design well suited to transferring heat between medium- and low-pressure fluids. Welded, semi-welded and brazed heat exchangers are used for heat exchange between high-pressure fluids or where a more compact product is required. In place of a pipe passing through a chamber, there are instead two alternating chambers, usually thin in depth, separated at their largest surface by a corrugated metal plate. The plates used in a plate and frame heat exchanger are obtained by one piece pressing of metal plates. Stainless steel is a commonly used metal for the plates because of its ability to withstand high temperatures, its strength, and its corrosion resistance.

The plates are often spaced by rubber sealing gaskets which are cemented into a section around the edge of the plates. The plates are pressed to form troughs at right angles to the direction of flow of the liquid which runs through the channels in the heat exchanger. These troughs are arranged so that they interlink with the other plates which forms the channel with gaps of 1.3–1.5 mm between the plates. The plates are compressed together in a rigid frame to form an arrangement of parallel flow channels with alternating hot and cold fluids. The plates produce an extremely large surface area, which allows for the fastest possible transfer. Making each chamber thin ensures that the majority of the volume of the liquid contacts the plate, again aiding exchange. The troughs also create and maintain a turbulent flow in the liquid to maximize heat transfer in the exchanger. A high degree of turbulence can be obtained at low flow rates and high heat transfer coefficient can then be achieved.

As compared to shell and tube heat exchangers, the temperature approach (the smallest difference between the temperatures of the cold and hot streams) in a plate heat exchangers may be as low as 1 °C whereas shell and tube heat exchangers require an approach of 5 °C or more. For the same amount of heat exchanged, the size of the plate heat exchanger is smaller, because of the large heat transfer area afforded by the plates (the large area through which heat can travel). Increase and reduction of the heat transfer area is simple in a plate heat-exchanger, through the addition or removal of plates from the stack.

Evaluating plate heat exchangers

Partially dismantled exchanger, with visible plates and gaskets Plate heat exchanger - dismantled pic02.jpg
Partially dismantled exchanger, with visible plates and gaskets

All plate heat exchangers look similar on the outside. The difference lies on the inside, in the details of the plate design and the sealing technologies used. Hence, when evaluating a plate heat exchanger, it is very important not only to explore the details of the product being supplied but also to analyze the level of research and development carried out by the manufacturer and the post-commissioning service and spare parts availability.

An important aspect to take into account when evaluating a heat exchanger are the forms of corrugation within the heat exchanger. There are two types: intermating and chevron corrugations. In general, greater heat transfer enhancement is produced from chevrons for a given increase in pressure drop and are more commonly used than intermating corrugations. [2] There are so many different ways of modifications to increase heat exchangers efficiency that it is extremely doubtful that any of them will be supported by a commercial simulator. In addition, some proprietary data can never be released from the heat transfer enhancement manufacturers. However, it does not mean that any of the pre-measurements for emerging technology are not accomplish by the engineers. Context information on several different forms of changes to heat exchangers is given below. The main objective of having a cost benefit heat exchanger compared to the usage of a traditional heat exchanger must always be fulfilled by heat exchanger enhancement. Fouling capacity, reliability and safety are other considerations that should be tackled.

First is Periodic Cleaning. Periodic cleaning (on-site cleaning) is the most efficient method to flush out all the waste and dirt that over time decreases the efficiency of the heat exchanger. This approach requires both sides of the PHE (Plate Heat Exchanger) to be drained, followed by its isolation from the fluid in the system. From both sides, water should be flushed out until it runs completely clear. The flushing should be carried out in the opposite direction to regular operations for the best results. Once it is done, it is then time to use a circular pump and a solution tank to pass on a cleaning agent while ensuring that the agent is compatible with the PHE (Plate Heat Exchanger) gaskets and plates. Lastly, until the discharge stream runs clear, the system should be flushed with water again.

Optimization of plate heat exchangers

To achieve improvement in PHE's, two important factors namely amount of heat transfer and pressure drop have to be considered such that amount of heat transfer needs to be increased and pressure drops need to be decreased. In plate heat exchangers due to presence of corrugated plate, there is a significant resistance to flow with high friction loss. Thus to design plate heat exchangers, one should consider both factors.

For various range of Reynolds numbers, many correlations and chevron angles for plate heat exchangers exist. The plate geometry is one of the most important factor in heat transfer and pressure drop in plate heat exchangers, however such a feature is not accurately prescribed. In the corrugated plate heat exchangers, because of narrow path between the plates, there is a large pressure capacity and the flow becomes turbulent along the path. Therefore, it requires more pumping power than the other types of heat exchangers. Therefore, higher heat transfer and less pressure drop are targeted. The shape of plate heat exchanger is very important for industrial applications that are affected by pressure drop.[ citation needed ]

Flow distribution and heat transfer equation

Design calculations of a plate heat exchanger include flow distribution and pressure drop and heat transfer. The former is an issue of Flow distribution in manifolds. [3] A layout configuration of plate heat exchanger can be usually simplified into a manifold system with two manifold headers for dividing and combining fluids, which can be categorized into U-type and Z-type arrangement according to flow direction in the headers, as shown in manifold arrangement. Bassiouny and Martin developed the previous theory of design. [4] [5] In recent years Wang [6] [7] unified all the main existing models and developed a most completed theory and design tool.

The total rate of heat transfer between the hot and cold fluids passing through a plate heat exchanger may be expressed as: Q = UA∆Tm where U is the Overall heat transfer coefficient, A is the total plate area, and ∆Tm is the Log mean temperature difference. U is dependent upon the heat transfer coefficients in the hot and cold streams. [2]

Manifold arrangement for flow distribution Manifold arrangement.jpg
Manifold arrangement for flow distribution

Their cleaning helps to avoid fouling and scaling without the heat exchanger needing to be shut down or operations disrupted. In order to avoid heat exchanger performance to decrease and service life of the tube extension, the OnC (Online Cleaning) can be used as a standalone approach or in conjunction with chemical treatment. The re-circulating ball type system and the brush and basket system are some of OnC techniques. OfC (Offline Cleaning) is another effective cleaning method that effectively increases the performance of heat exchangers and decreases operating expenses. This method, also known as pigging, uses a shape like bullet device that is inserted in each tube and using high air pressure to force down the tube. Chemical washing, hydro-blasting and hydro-lancing are other widely used methods other than OfC. Both these techniques, when used frequently, will restore the exchanger into its optimum efficiency until the fouling and scaling begin to slip slowly and adversely affecting the efficiency of the heat exchanger.

Operation and maintenance cost is necessary for a heat exchanger. But there are different ways to minimize the cost. Firstly, cost can be minimized by reducing fouling formation on heat exchanger that decreases the overall heat transfer coefficient. According to analysis estimated, effect of fouling formation will generate a huge cost of operational losses which more than 4 billion dollars. The total fouling cost including capital cost, energy cost, maintenance cost and cost of profit loss. Chemical fouling inhibitors is one of the fouling control method. For example, acrylic acid/hydroxypropyl acrylate (AA/HPA) and acrylic acid/sulfonic acid (AA/SA) copolymers can be used to inhibit the fouling by deposition of calcium phosphate. Next, deposition of fouling can also be reduced by installing the heat exchanger vertically as the gravitational force pulls any of the particles away from the heat transfer surface in the heat exchanger. Second, operation cost can be minimized when saturated steam is used compared to superheated steam as a fluid. Superheated steam acts as an insulator and poor heat conductor, it is not suitable for heat application such as heat exchanger.

See also

Related Research Articles

<span class="mw-page-title-main">Heat exchanger</span> Equipment used to transfer heat between fluids

A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contact. They are widely used in space heating, refrigeration, air conditioning, power stations, chemical plants, petrochemical plants, petroleum refineries, natural-gas processing, and sewage treatment. The classic example of a heat exchanger is found in an internal combustion engine in which a circulating fluid known as engine coolant flows through radiator coils and air flows past the coils, which cools the coolant and heats the incoming air. Another example is the heat sink, which is a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, often air or a liquid coolant.

<span class="mw-page-title-main">Brazing</span> Metal-joining technique

Brazing is a metal-joining process in which two or more metal items are joined together by melting and flowing a filler metal into the joint, with the filler metal having a lower melting point than the adjoining metal.

<span class="mw-page-title-main">Solar thermal collector</span> Device that collects heat

A solar thermal collector collects heat by absorbing sunlight. The term "solar collector" commonly refers to a device for solar hot water heating, but may refer to large power generating installations such as solar parabolic troughs and solar towers or non water heating devices such as solar cooker, solar air heaters.

<span class="mw-page-title-main">Heat recovery ventilation</span> Method of reusing thermal energy in a building

Heat recovery ventilation (HRV), also known as mechanical ventilation heat recovery (MVHR), is an energy recovery ventilation system that operates between two air sources at different temperatures. It's a method that is used to reduce the heating and cooling demands of buildings. By recovering the residual heat in the exhaust gas, the fresh air introduced into the air conditioning system is preheated, and the fresh air's enthalpy is reduced before it enters the room, or the air cooler of the air conditioning unit performs heat and moisture treatment. A typical heat recovery system in buildings comprises a core unit, channels for fresh and exhaust air, and blower fans. Building exhaust air is used as either a heat source or heat sink, depending on the climate conditions, time of year, and requirements of the building. Heat recovery systems typically recover about 60–95% of the heat in the exhaust air and have significantly improved the energy efficiency of buildings.

A plate-fin heat exchanger is a type of heat exchanger design that uses plates and finned chambers to transfer heat between fluids, most commonly gases. It is often categorized as a compact heat exchanger to emphasize its relatively high heat transfer surface area to volume ratio. The plate-fin heat exchanger is widely used in many industries, including the aerospace industry for its compact size and lightweight properties, as well as in cryogenics where its ability to facilitate heat transfer with small temperature differences is utilized.

<span class="mw-page-title-main">Shell-and-tube heat exchanger</span> Class of heat exchanger designs

A shell-and-tube heat exchanger is a class of heat exchanger designs. It is the most common type of heat exchanger in oil refineries and other large chemical processes, and is suited for higher-pressure applications. As its name implies, this type of heat exchanger consists of a shell with a bundle of tubes inside it. One fluid runs through the tubes, and another fluid flows over the tubes to transfer heat between the two fluids. The set of tubes is called a tube bundle, and may be composed of several types of tubes: plain, longitudinally finned, etc.

<span class="mw-page-title-main">Fouling</span> Accumulation of unwanted material on solid surfaces

Fouling is the accumulation of unwanted material on solid surfaces. The fouling materials can consist of either living organisms (biofouling) or a non-living substance. Fouling is usually distinguished from other surface-growth phenomena in that it occurs on a surface of a component, system, or plant performing a defined and useful function and that the fouling process impedes or interferes with this function.

A binary cycle is a method for generating electrical power from geothermal resources and employs two separate fluid cycles, hence binary cycle. The primary cycle extracts the geothermal energy from the reservoir, and secondary cycle converts the heat into work to drive the generator and generate electricity.

Economizers, or economisers (UK), are mechanical devices intended to reduce energy consumption, or to perform useful function such as preheating a fluid. The term economizer is used for other purposes as well. Boiler, power plant, heating, refrigeration, ventilating, and air conditioning (HVAC) uses are discussed in this article. In simple terms, an economizer is a heat exchanger.

<span class="mw-page-title-main">Energy recovery ventilation</span> Uses the energy in air exhausted from a building to treat the incoming air

Energy recovery ventilation (ERV) is the energy recovery process in residential and commercial HVAC systems that exchanges the energy contained in normally exhausted air of a building or conditioned space, using it to treat (precondition) the incoming outdoor ventilation air. The specific equipment involved may be called an Energy Recovery Ventilator, also commonly referred to simply as an ERV.

<span class="mw-page-title-main">Marine heat exchanger</span>

Marine heat exchangers are no different than non-marine heat exchangers except for the simple fact that they are found aboard ships. Heat exchangers can be used for a wide variety of uses. As the name implies, these can be used for heating as well as cooling. The two primary types of marine heat exchangers used aboard vessels in the maritime industry are plate, and shell and tube. Maintenance for heat exchangers prevents fouling and galvanic corrosion from dissimilar metals.

A regenerative heat exchanger, or more commonly a regenerator, is a type of heat exchanger where heat from the hot fluid is intermittently stored in a thermal storage medium before it is transferred to the cold fluid. To accomplish this the hot fluid is brought into contact with the heat storage medium, then the fluid is displaced with the cold fluid, which absorbs the heat.

Continuous reactors carry material as a flowing stream. Reactants are continuously fed into the reactor and emerge as continuous stream of product. Continuous reactors are used for a wide variety of chemical and biological processes within the food, chemical and pharmaceutical industries. A survey of the continuous reactor market will throw up a daunting variety of shapes and types of machine. Beneath this variation however lies a relatively small number of key design features which determine the capabilities of the reactor. When classifying continuous reactors, it can be more helpful to look at these design features rather than the whole system.

The dynamic scraped surface heat exchanger (DSSHE) is a type of heat exchanger used to remove or add heat to fluids, mainly foodstuffs, but also other industrial products. They have been designed to address specific problems that impede efficient heat transfer. DSSHEs improve efficiency by removing fouling layers, increasing turbulence in the case of high viscosity flow, and avoiding the generation of crystals and other process by-products. DSSHEs incorporate an internal mechanism which periodically removes the product from the heat transfer wall. The sides are scraped by blades made of a rigid plastic material to prevent damage to the scraped surface.

Concentric Tube Heat Exchangers are used in a variety of industries for purposes such as material processing, food preparation, and air-conditioning. They create a temperature driving force by passing fluid streams of different temperatures parallel to each other, separated by a physical boundary in the form of a pipe. This induces forced convection, transferring heat to/from the product.

<span class="mw-page-title-main">Flow distribution in manifolds</span>

The flow in manifolds is extensively encountered in many industrial processes when it is necessary to distribute a large fluid stream into several parallel streams and then to collect them into one discharge stream, such as fuel cells, plate heat exchanger, radial flow reactor, and irrigation. Manifolds can usually be categorized into one of the following types: dividing, combining, Z-type and U-type manifolds. A key question is the uniformity of the flow distribution and pressure drop.

The circulating fluidized bed (CFB) is a type of Fluidized bed combustion that utilizes a recirculating loop for even greater efficiency of combustion. while achieving lower emission of pollutants. Reports suggest that up to 95% of pollutants can be absorbed before being emitted into the atmosphere. The technology is limited in scale however, due to its extensive use of limestone, and the fact that it produces waste byproducts.

Circulation evaporators are a type of evaporating unit designed to separate mixtures unable to be evaporated by a conventional evaporating unit. Circulation evaporation incorporates the use of both heat exchangers and flash separation units in conjunction with circulation of the solvent in order to remove liquid mixtures without conventional boiling. There are two types of Circulation Evaporation; Natural Circulation Evaporators and Forced Circulation Evaporators, both of which are still currently used in industry today, although forced Circulation systems, which have a circulation pump as opposed to natural systems with no driving force, have a much wider range of appropriate uses.

A rising film or vertical long tube evaporator is a type of evaporator that is essentially a vertical shell and tube heat exchanger. The liquid being evaporated is fed from the bottom into long tubes and heated with steam condensing on the outside of the tube from the shell side. This is to produce steam and vapour within the tube bringing the liquid inside to a boil. The vapour produced then presses the liquid against the walls of the tubes and causes the ascending force of this liquid. As more vapour is formed, the centre of the tube will have a higher velocity which forces the remaining liquid against the tube wall forming a thin film which moves upwards. This phenomenon of the rising film gives the evaporator its name.

Pillow-plate heat exchangers are a class of fully welded heat exchanger design, which exhibit a wavy, “pillow-shaped” surface formed by an inflation process. Compared to more conventional equipment, such as shell and tube and plate and frame heat exchangers, pillow plates are a quite young technology. Due to their geometric flexibility, they are used as well as “plate-type” heat exchangers and as jackets for cooling or heating of vessels. Pillow plate equipment is currently experiencing increased attention and implementation in process industry.

References

  1. "Plate Heat Exchangers". Techtrans Engineers . 19 February 2022.
  2. 1 2 Hewitt, G (1994). Process Heat Transfer. CRC Press.
  3. Wang, J.Y. (2011). "Theory of flow distribution in manifolds". Chemical Engineering J. 168 (3): 1331–1345. doi:10.1016/j.cej.2011.02.050.
  4. Bassiouny, M.K.; Martin, H. (1984). "Flow distribution and pressure drop in plate heat exchanges. Part I. U-Type arrangement". Chem. Eng. Sci. 39 (4): 693–700. doi:10.1016/0009-2509(84)80176-1.
  5. Bassiouny, M.K.; Martin, H. (1984). "Flow distribution and pressure drop in plate heat exchanges. Part II. Z-Type arrangement". Chem. Eng. Sci. 39 (4): 701–704. doi:10.1016/0009-2509(84)80177-3.
  6. Wang, J.Y. (2008). "Pressure drop and flow distribution in parallel-channel of configurations of fuel cell stacks: U-type arrangement". International Journal of Hydrogen Energy. 33 (21): 6339–6350. doi:10.1016/j.ijhydene.2008.08.020.
  7. Wang, J.Y. (2010). "Pressure drop and flow distribution in parallel-channel of configurations of fuel cell stacks: Z-type arrangement". International Journal of Hydrogen Energy. 35 (11): 5498–5509. doi:10.1016/j.ijhydene.2010.02.131.

Bibliography