Polyaniline

Last updated
Space-filling model of the local structure of a polyaniline chain in the reduced leucoemeraldine base (LEB) oxidation state, based on the crystal structure of the tetramer. Polyaniline-LEB-based-on-tetramer-xtal-3D-sf.png
Space-filling model of the local structure of a polyaniline chain in the reduced leucoemeraldine base (LEB) oxidation state, based on the crystal structure of the tetramer.

Polyaniline (PANI) is a conducting polymer and organic semiconductor of the semi-flexible rod polymer family. The compound has been of interest since the 1980s because of its electrical conductivity and mechanical properties. Polyaniline is one of the most studied conducting polymers. [2] [3]

Contents

Historical development

Polyaniline was discovered in the 19th century by F. Ferdinand Runge (1794–1867), Carl Fritzsche (1808–1871), John Lightfoot (1831–1872), and Henry Letheby (1816–1876). [4] Lightfoot studied the oxidation of aniline, which had been isolated only 20 years previously. He developed the first commercially successful route to the dye called Aniline black. [5] [6] The first definitive report of polyaniline did not occur until 1862, which included an electrochemical method for the determination of small quantities of aniline. [7]

From the early 20th century on, occasional reports about the structure of PANI were published.

Structures of polyaniline (n+m = 1, x = half degree of polymerization). Polyaniline structure.svg
Structures of polyaniline (n+m = 1, x = half degree of polymerization).

Polymerized from the inexpensive aniline, polyaniline can be found in one of three idealized oxidation states: [8]

In the figure, x equals half the degree of polymerization (DP). Leucoemeraldine with n = 1, m = 0 is the fully reduced state. Pernigraniline is the fully oxidized state (n = 0, m = 1) with imine links instead of amine links. Studies have shown that most forms of polyaniline are one of the three states or physical mixtures of these components. The emeraldine (n = m = 0.5) form of polyaniline, often referred to as emeraldine base (EB), is neutral, if doped (protonated) it is called emeraldine salt (ES), with the imine nitrogens protonated by an acid. Protonation helps to delocalize the otherwise trapped diiminoquinone-diaminobenzene state. Emeraldine base is regarded as the most useful form of polyaniline due to its high stability at room temperature and the fact that, upon doping with acid, the resulting emeraldine salt form of polyaniline is highly electrically conducting. [6] Leucoemeraldine and pernigraniline are poor conductors, even when doped with an acid.

The colour change associated with polyaniline in different oxidation states can be used in sensors and electrochromic devices. [9] Polyaniline sensors typically exploit changes in electrical conductivity between the different oxidation states or doping levels. [10] Treatment of emeraldine with acids increases the electrical conductivity by up to ten orders of magnitude. Undoped polyaniline has a conductivity of 6.28×10−9 S/m, whereas conductivities of 4.60×10−5 S/m can be achieved by doping to 4% HBr. [11] The same material can be prepared by oxidation of leucoemeraldine.

Synthesis

Although the synthetic methods to produce polyaniline are quite simple, the mechanism of polymerization is probably complex. The formation of leucoemeraldine can be described as follows, where [O] is a generic oxidant: [12]

n C6H5NH2 + [O] → [C6H4NH]n + H2O

A common oxidant is ammonium persulfate in 1 M hydrochloric acid (other acids can be used). The polymer precipitates as an unstable dispersion with micrometer-scale particulates.

(Per)nigraniline is prepared by oxidation of the emeraldine base with a peracid: [13]

{[C6H4NH]2[C6H4N]2}n + RCO3H → [C6H4N]n + H2O + RCO2H

Processing

The synthesis of polyaniline nanostructures is facile. [14]

Using surfactant dopants, the polyaniline can be made dispersible and hence useful for practical applications. Bulk synthesis of polyaniline nanofibers has been researched extensively. [15]

A multi-stage model for the formation of emeraldine base is proposed. In the first stage of the reaction the pernigraniline PS salt oxidation state is formed. In the second stage pernigraniline is reduced to the emeraldine salt as aniline monomer gets oxidized to the radical cation. [8] In the third stage this radical cation couples with ES salt. This process can be followed by light scattering analysis which allows the determination of the absolute molar mass. According to one study in the first step a DP of 265 is reached with the DP of the final polymer at 319. Approximately 19% of the final polymer is made up of the aniline radical cation which is formed during the reaction. [16]

Polyaniline is typically produced in the form of long-chain polymer aggregates, surfactant (or dopant) stabilized nanoparticle dispersions, or stabilizer-free nanofiber dispersions depending on the supplier and synthetic route. Surfactant or dopant stabilized polyaniline dispersions have been available for commercial sale since the late 1990s. [17]

Potential applications

The major applications are printed circuit board manufacturing: final finishes, used in millions of m2 every year, antistatic and ESD coatings, and corrosion protection. [5] [17] Polyaniline and its derivatives are also used as the precursor for the production of N-doped carbon materials through high-temperature heat treatment. [18] Printed emeraldine polyaniline-based sensors have also gained much attention for widespread applications where devices are typically fabricated via screen, inkjet [19] or aerosol jet [20] printing.

Related Research Articles

<span class="mw-page-title-main">Organic electronics</span> Field of materials science

Organic electronics is a field of materials science concerning the design, synthesis, characterization, and application of organic molecules or polymers that show desirable electronic properties such as conductivity. Unlike conventional inorganic conductors and semiconductors, organic electronic materials are constructed from organic (carbon-based) molecules or polymers using synthetic strategies developed in the context of organic chemistry and polymer chemistry.

Molecular electronics is the study and application of molecular building blocks for the fabrication of electronic components. It is an interdisciplinary area that spans physics, chemistry, and materials science. The unifying feature is use of molecular building blocks to fabricate electronic components. Due to the prospect of size reduction in electronics offered by molecular-level control of properties, molecular electronics has generated much excitement. It provides a potential means to extend Moore's Law beyond the foreseen limits of small-scale conventional silicon integrated circuits.

<span class="mw-page-title-main">Conductive polymer</span> Organic polymers that conduct electricity

Conductive polymers or, more precisely, intrinsically conducting polymers (ICPs) are organic polymers that conduct electricity. Such compounds may have metallic conductivity or can be semiconductors. The main advantage of conductive polymers is that they are easy to process, mainly by dispersion. Conductive polymers are generally not thermoplastics, i.e., they are not thermoformable. But, like insulating polymers, they are organic materials. They can offer high electrical conductivity but do not show similar mechanical properties to other commercially available polymers. The electrical properties can be fine-tuned using the methods of organic synthesis and by advanced dispersion techniques.

<span class="mw-page-title-main">Polyacetylene</span> Organic polymer made of the repeating unit [C2H2]

Polyacetylene usually refers to an organic polymer with the repeating unit [C2H2]n. The name refers to its conceptual construction from polymerization of acetylene to give a chain with repeating olefin groups. This compound is conceptually important, as the discovery of polyacetylene and its high conductivity upon doping helped to launch the field of organic conductive polymers. The high electrical conductivity discovered by Hideki Shirakawa, Alan Heeger, and Alan MacDiarmid for this polymer led to intense interest in the use of organic compounds in microelectronics. This discovery was recognized by the Nobel Prize in Chemistry in 2000. Early work in the field of polyacetylene research was aimed at using doped polymers as easily processable and lightweight "plastic metals". Despite the promise of this polymer in the field of conductive polymers, many of its properties such as instability to air and difficulty with processing have led to avoidance in commercial applications.

<span class="mw-page-title-main">Polythiophene</span>

Polythiophenes (PTs) are polymerized thiophenes, a sulfur heterocycle. The parent PT is an insoluble colored solid with the formula (C4H2S)n. The rings are linked through the 2- and 5-positions. Poly(alkylthiophene)s have alkyl substituents at the 3- or 4-position(s). They are also colored solids, but tend to be soluble in organic solvents.

<span class="mw-page-title-main">Polypyrrole</span>

Polypyrrole (PPy) is an organic polymer obtained by oxidative polymerization of pyrrole. It is a solid with the formula H(C4H2NH)nH. It is an intrinsically conducting polymer, used in electronics, optical, biological and medical fields.

Organic semiconductors are solids whose building blocks are pi-bonded molecules or polymers made up by carbon and hydrogen atoms and – at times – heteroatoms such as nitrogen, sulfur and oxygen. They exist in the form of molecular crystals or amorphous thin films. In general, they are electrical insulators, but become semiconducting when charges are either injected from appropriate electrodes, upon doping or by photoexcitation.

<span class="mw-page-title-main">Alan MacDiarmid</span> American-New Zealand chemist (1927–2007)

Alan Graham MacDiarmid, ONZ FRS was a New Zealand-born American chemist, and one of three recipients of the Nobel Prize for Chemistry in 2000.

A non-carbon nanotube is a cylindrical molecule often composed of metal oxides, or group III-Nitrides and morphologically similar to a carbon nanotube. Non-carbon nanotubes have been observed to occur naturally in some mineral deposits.

An antistatic agent is a compound used for treatment of materials or their surfaces in order to reduce or eliminate buildup of static electricity. Static charge may be generated by the triboelectric effect or by a non-contact process using a high voltage power source. Static charge may be introduced on a surface as part of an in-mold label printing process.

<i>m</i>-Cresol Chemical compound

meta-Cresol, also 3-methylphenol, is an organic compound with the formula CH3C6H4(OH). It is a colourless, viscous liquid that is used as an intermediate in the production of other chemicals. It is a derivative of phenol and is an isomer of p-cresol and o-cresol.

Nanofiber Seeding is a process to control the bulk morphology of chemically synthesized conducting polymers. Typically, catalytic amount of nanofiber seeds are added in prior to onset of nanofiber seeding polymerization (reaction), where seeds are served as the 'morphology directing agent' rather than conventional templates.

<span class="mw-page-title-main">Nanofiber</span> Natural or synthetic fibers with diameters in the nanometer range

Nanofibers are fibers with diameters in the nanometer range. Nanofibers can be generated from different polymers and hence have different physical properties and application potentials. Examples of natural polymers include collagen, cellulose, silk fibroin, keratin, gelatin and polysaccharides such as chitosan and alginate. Examples of synthetic polymers include poly(lactic acid) (PLA), polycaprolactone (PCL), polyurethane (PU), poly(lactic-co-glycolic acid) (PLGA), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and poly(ethylene-co-vinylacetate) (PEVA). Polymer chains are connected via covalent bonds. The diameters of nanofibers depend on the type of polymer used and the method of production. All polymer nanofibers are unique for their large surface area-to-volume ratio, high porosity, appreciable mechanical strength, and flexibility in functionalization compared to their microfiber counterparts.

<i>Synthetic Metals</i> Academic journal

Synthetic Metals is a peer-reviewed scientific journal covering electronic polymers and electronic molecular materials.

<span class="mw-page-title-main">Transparent conducting film</span> Optically transparent and electrically conductive material

Transparent conducting films (TCFs) are thin films of optically transparent and electrically conductive material. They are an important component in a number of electronic devices including liquid-crystal displays, OLEDs, touchscreens and photovoltaics. While indium tin oxide (ITO) is the most widely used, alternatives include wider-spectrum transparent conductive oxides (TCOs), conductive polymers, metal grids and random metallic networks, carbon nanotubes (CNT), graphene, nanowire meshes and ultra thin metal films.

<span class="mw-page-title-main">Polyaniline nanofibers</span>

Polyaniline nanofibers are a high aspect form of polyaniline, a polymer consisting of aniline monomers, which appears as discrete long threads with an average diameter between 30 nm and 100 nm. Polyaniline is one of the oldest known conducting polymers, being known for over 150 years. Polyaniline nanofibers are often studied for their potential to enhance the properties of polyaniline or have additional beneficial properties due to the addition of a nanostructure to the polymer. Properties that make polyaniline useful can be seen in the nanofiber form as well, such as facile synthesis, environmental stability, and simple acid/base doping/dedoping chemistry. These and other properties have led to the formation of various applications for polyaniline nanofibers as actuators memory devices, and sensors.

<span class="mw-page-title-main">Park Yung-woo</span> South Korean physicist (born 1952)

Park Yung-woo is a South Korean physicist, who has worked in the field of materials science.

<span class="mw-page-title-main">Interfacial polymerization</span>

Interfacial polymerization is a type of step-growth polymerization in which polymerization occurs at the interface between two immiscible phases, resulting in a polymer that is constrained to the interface. There are several variations of interfacial polymerization, which result in several types of polymer topologies, such as ultra-thin films, nanocapsules, and nanofibers, to name just a few.

Lithium hybrid organic batteries are an energy storage device that combines lithium with an organic polymer. For example, polyaniline vanadium (V) oxide (PAni/V2O5) can be incorporated into the nitroxide-polymer lithium iron phosphate battery, PTMA/LiFePO4. Together, they improve the lithium ion intercalation capacity, cycle life, electrochemical performances, and conductivity of batteries.

Zinc oxide (ZnO) nanostructures are structures with at least one dimension on the nanometre scale, composed predominantly of zinc oxide. They may be combined with other composite substances to change the chemistry, structure or function of the nanostructures in order to be used in various technologies. Many different nanostructures can be synthesised from ZnO using relatively inexpensive and simple procedures. ZnO is a semiconductor material with a wide band gap energy of 3.3eV and has the potential to be widely used on the nanoscale. ZnO nanostructures have found uses in environmental, technological and biomedical purposes including ultrafast optical functions, dye-sensitised solar cells, lithium-ion batteries, biosensors, nanolasers and supercapacitors. Research is ongoing to synthesise more productive and successful nanostructures from ZnO and other composites. ZnO nanostructures is a rapidly growing research field, with over 5000 papers published during 2014-2019.

References

  1. M. Evain; S. Quillard; B. Corraze; W. Wang; A. G. MacDiarmid (2002). "A phenyl-end-capped tetramer of aniline". Acta Crystallogr. E . 58 (3): o343–o344. Bibcode:2002AcCrE..58O.343E. doi:10.1107/S1600536802002532. S2CID   62598347.
  2. Okamoto, Yoshikuko; Brenner, Walter (1964). "Ch. 7: Organic Semiconductors". Polymers. Reinhold. pp. 125–158.
  3. Heeger, Alan (2001). "Nobel Lecture: Semiconducting and metallic polymers: The fourth generation of polymeric materials". Reviews of Modern Physics. 73 (3): 681–700. Bibcode:2001RvMP...73..681H. CiteSeerX   10.1.1.208.7569 . doi:10.1103/RevModPhys.73.681.
  4. Rasmussen, Seth C. (6 October 2017). "The Early History of Polyaniline: Discovery and Origins". Substantia. 1 (2). Firenze University Press: 99–109. doi:10.13128/substantia-30. Archived from the original on 25 June 2022. PDF version
  5. 1 2 Horst Berneth (2002). "Azine Dyes". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a03_213.pub2. ISBN   978-3527306732.
  6. 1 2 MacDiarmid, Alan G. (2001). ""Synthetic Metals": A Novel Role for Organic Polymers (Nobel Lecture)". Angewandte Chemie International Edition. 40 (14): 2581–2590. doi:10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2.
  7. Letheby, H. (1862). "XXIX.-On the production of a blue substance by the electrolysis of sulphate of aniline". Journal of the Chemical Society. 15: 161–163. doi:10.1039/JS8621500161.
  8. 1 2 Feast, W.J.; Tsibouklis, J.; Pouwer, K.L.; Groenendaal, L.; Meijer, E.W. (1996). "Synthesis, processing and material properties of conjugated polymers". Polymer. 37 (22): 5017. CiteSeerX   10.1.1.619.5832 . doi:10.1016/0032-3861(96)00439-9.
  9. Huang, Li-Ming; Chen, Cheng-Hou; Wen, Ten-Chin (2006). "Development and characterization of flexible electrochromic devices based on polyaniline and poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid)". Electrochimica Acta. 51 (26): 5858. doi:10.1016/j.electacta.2006.03.031.
  10. Virji, Shabnam; Huang, Jiaxing; Kaner, Richard B.; Weiller, Bruce H. (2004). "Polyaniline Nanofiber Gas Sensors: Examination of Response Mechanisms". Nano Letters. 4 (3): 491. Bibcode:2004NanoL...4..491V. doi:10.1021/nl035122e.
  11. Hammo, Shamil M. (2012). "Effect of Acidic Dopants properties on the Electrical Conductivity of Poly aniline". Tikrit Journal of Pure Science. 17 (2).
  12. Chiang, J.C.; MacDiarmid, A. G. (1986). "'Polyaniline': Protonic Acid Doping of the Emeraldine Form to the Metallic Regime". Synthetic Metals. 1 (13): 193. doi:10.1016/0379-6779(86)90070-6.
  13. MacDiarmid, A.G.; Manohar, S.K.; Masters, J.G.; Sun, Y.; Weiss, H.; Epstein, A.J. (1991). "Polyaniline: Synthesis and properties of pernigraniline base". Synthetic Metals. 41 (1–2): 621–626. doi: 10.1016/0379-6779(91)91145-Z .
  14. Ćirić-Marjanović, G. Polyaniline Nanostructures, in Nanostructured Conductive Polymers (ed A. Eftekhari), 2010, John Wiley & Sons, Ltd, Chichester, UK. doi : 10.1002/9780470661338.ch2 PDF
  15. Huang, Jiaxing; Virji, Shabnam; Weiller, Bruce H.; Kaner, Richard B. (2003). "Polyaniline Nanofibers: Facile Synthesis and Chemical Sensors" (PDF). Journal of the American Chemical Society. 125 (2): 314–5. CiteSeerX   10.1.1.468.6554 . doi:10.1021/ja028371y. PMID   12517126. Archived from the original (PDF) on July 22, 2010.
  16. Kolla, Harsha S.; Surwade, Sumedh P.; Zhang, Xinyu; MacDiarmid, Alan G.; Manohar, Sanjeev K. (2005). "Absolute Molecular Weight of Polyaniline". Journal of the American Chemical Society. 127 (48): 16770–1. doi:10.1021/ja055327k. PMID   16316207.
  17. 1 2 Wessling, Bernhard (2010). "New Insight into Organic Metal Polyaniline Morphology and Structure". Polymers. 2 (4): 786–798. doi: 10.3390/polym2040786 .
  18. Yin, Xi; Chung, Hoon T.; Martinez, Ulises; Lin, Ling; Artyushkova, Kateryna; Zelenay, Piotr (3 May 2019). "PGM-Free ORR Catalysts Designed by Templating PANI-Type Polymers Containing Functional Groups with High Affinity to Iron". Journal of the Electrochemical Society. 166 (7): F3240–F3245. Bibcode:2019JElS..166F3240Y. doi: 10.1149/2.0301907jes . OSTI   1512751.
  19. Crowley, K.; Morrin, A.; Hernandez, A.; Omalley, E.; Whitten, P.; Wallace, G.; Smyth, M.; Killard, A. (2008-12-15). "Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles". Talanta. 77 (2): 710–717. doi:10.1016/j.talanta.2008.07.022. ISSN   0039-9140.
  20. Fisher, Christine; Warmack, Bruce J.; Yu, Yongchao; Skolrood, Lydia N.; Li, Kai; Joshi, Pooran C.; Saito, Tomonori; Aytug, Tolga (2021-04-19). "All-aerosol-jet-printed highly sensitive and selective polyaniline-based ammonia sensors: a route toward low-cost, low-power gas detection". Journal of Materials Science. 56 (22): 12596–12606. Bibcode:2021JMatS..5612596F. doi:10.1007/s10853-021-06080-0. ISSN   1573-4803. OSTI   1798595. S2CID   233303736.