Polygenic score

Last updated
The two graphics illustrate sampling distributions of polygenic scores and the predictive ability of stratified sampling on polygenic risk score with increasing age. + The left panel shows how risk--(the standardized PRS on the x-axis)--can separate 'cases' (i.e., individuals with a certain disease, (red)) from the 'controls' (individuals without the disease, (blue)). The y-axis (vertical axis) indicates how many in each group are assigned a certain score. + At the right panel, the same population is divided into three groups according to their predicted risk, i.e., their assigned score, as high (red), middle (gray), or low (blue). The y-axis shows the observed risk amounts, where the x-axis shows the groups separating in risk as they age--corresponding with the predicted risk scores. PRS Illustration.png
The two graphics illustrate sampling distributions of polygenic scores and the predictive ability of stratified sampling on polygenic risk score with increasing age. + The left panel shows how risk(the standardized PRS on the x-axis)can separate 'cases' (i.e., individuals with a certain disease, (red)) from the 'controls' (individuals without the disease, (blue)). The y-axis (vertical axis) indicates how many in each group are assigned a certain score. + At the right panel, the same population is divided into three groups according to their predicted risk, i.e., their assigned score, as high (red), middle (gray), or low (blue). The y-axis shows the observed risk amounts, where the x-axis shows the groups separating in risk as they agecorresponding with the predicted risk scores.

In genetics, a polygenic score (PGS) is a number that summarizes the estimated effect of many genetic variants on an individual's phenotype. The PGS is also called the polygenic index (PGI) or genome-wide score; in the context of disease risk, it is called a polygenic risk score (PRS or PR score [1] ) or genetic risk score. The score reflects an individual's estimated genetic predisposition for a given trait and can be used as a predictor for that trait. [2] [3] [4] [5] [6] It gives an estimate of how likely an individual is to have a given trait based only on genetics, without taking environmental factors into account; and it is typically calculated as a weighted sum of trait-associated alleles. [7] [8] [9]

Contents

Recent progress in genetics has developed polygenic predictors of complex human traits, including risk for many important complex diseases [10] [11] that are typically affected by many genetic variants, each of which confers a small effect on overall risk. [12] [13] In a polygenic risk predictor the lifetime (or age-range) risk for the disease is a numerical function captured by the score which depends on the states of thousands of individual genetic variants (i.e., single-nucleotide polymorphisms, or SNPs).

Polygenic scores are widely used in animal breeding and plant breeding due to their efficacy in improving livestock breeding and crops. [14] In humans, polygenic scores are typically generated from data of genome-wide association study (GWAS). They are an active area of research spanning topics such as learning algorithms for genomic prediction; new predictor training; validation testing of predictors; and clinical application of PRS. [15] [16] [17] [4] [11] In 2018, the American Heart Association named polygenic risk scores as one of the major breakthroughs in research in heart disease and stroke. [18]

Background

An early (2006) example of a genetic risk score applied to Type 2 Diabetes in humans. The authors of the study concluded that, individually, risk alleles only moderately identify increase-of-risk of disease; but identifiable risk is "multiplicatively increased" when information is combined from several known risk polymorphisms. Using such combined information allows for identifying subgroups of a population with odds for disease that are significantly greater than when using a single polymorphism. Type 2 Diabetes Genetic Risk Score 2006.png
An early (2006) example of a genetic risk score applied to Type 2 Diabetes in humans. The authors of the study concluded that, individually, risk alleles only moderately identify increase-of-risk of disease; but identifiable risk is "multiplicatively increased" when information is combined from several known risk polymorphisms. Using such combined information allows for identifying subgroups of a population with odds for disease that are significantly greater than when using a single polymorphism.

DNA in living organisms is the molecular genetic code for life. Although polygenic risk scores from study in humans have gained the most attention, the basic idea was first introduced for selective plant and animal breeding. [20] Similar to the latter-day approaches of constructing a polygenic risk score, an individual'sanimal or plantbreeding value was calculated to be the combined weight of several single-nucleotide polymorphisms (SNPs) by their individual effects on a trait. [21]

Human DNA contains about 3 billion bases. The human genome can be broadly separated into coding and non-coding sequences, where the coding genome encodes instructions for genes, including some of the sequence that codes for proteins. Genome-wide association studies enable mapping phenotypes to the variations in nucleotide bases in human populations. Improvements in methodology and studies with large cohorts have enabled the mapping of many traitssome of which are diseasesto the human genome. Learning which variations influence which specific traits and how strongly they do so, are the key targets for constructing polygenic scores in humans.

The methods were first considered for humans after the year 2000, and specifically by a proposal in 2007 that such scores could be used in human genetics to identify individuals at high risk for disease. [22] The concept was successfully applied in 2009 by researchers who organized a genome-wide association study (GWAS) regarding schizophrenia with the objective of constructing scores of risk propensity. That study was the first to use the term polygenic score for a prediction drawn from a linear combination of single-nucleotide polymorphism (SNP) genotypeswhich was able to explain 3% of the variance in schizophrenia. [23]

Calculation with genome-wide association study

A PRS is constructed from the estimated effect sizes derived from a genome-wide association study (GWAS). In a GWAS, single-nucleotide polymorphisms (SNPs) are tested for an association between cases and controls, (see top graphic). The results from a GWAS estimate the strength of the association at each SNP, i.e., the effect size at the SNP, as well as a p-value for statistical significance. A typical score is then calculated by adding the number of risk-modifying alleles across a large number of SNPs, where the number of alleles for each SNP is multiplied by the weight for the SNP. [24]

In mathematical form, the estimated polygenic score is obtained as the sum across m number of SNPs with risk-increasing alleles weighted by their weights, i.e., .

This idea can be generalized to the study of any trait, and is an example of the more general mathematical term regression analysis.[ citation needed ]

Key considerations

Methods for generating polygenic scores in humans are an active area of research. [25] [8] Two key considerations in developing polygenic scores are which SNPs and the number of SNPs to include. The simplest, the so-called "pruning and thresholding" method, sets weights equal to the coefficient estimates from a regression of the trait on each genetic variant. The included SNPs may be selected using an algorithm that attempts to ensure that each marker is approximately independent.

Independence of each SNP is important for the score's predictive accuracy. SNPs that are physically close to each other are more likely to be in linkage disequilibrium, meaning they typically are inherited together and therefore don't provide independent predictive power. That's what's referred to as 'pruning'. The 'thresholding' refers to using only SNPs that meet a specific p-value threshold. [26]

Penalized regression can also be used to construct polygenic scores. [2] [27] From prior information penalized regression assigns probabilities on: 1) how many genetic variants are expected to affect a trait, and 2) the distribution of their effect sizes. These methods in effect "penalize" the large coefficients in a regression model and shrink them conservatively. One popular tool for this approach is "PRS-CS". [28] Another is to use certain Bayesian methods, first proposed in 2001 that directly incorporate genetic features of a given trait as well as genomic features like linkage disequilibrium. [29] (One Bayesian method uses "linkage disequilibrium prediction" or LDpred.) [6] [30]

More approaches for developing polygenic risk scores continue to be described. For example, by incorporating effect sizes from populations of different ancestry, the predictive ability of scores can be improved. [31] Incorporating knowledge of the functional roles of specific genomic chunks can improve the utility of scores. [32] Studies have examined the performances of these methods on standardized dataset. [33]

Application to humans

As the number of genome-wide association studies has exploded, along with rapid advances in methods for calculating polygenic scores, its most obvious application is in clinical settings for disease prediction or risk stratification. It is important not to over- or under-state the value of polygenic scores. A key advantage of quantifying polygenic contribution for each individual is that the genetic liability does not change over an individual's lifespan. However, while a disease may have strong genetic contributions, the risk arising from one's genetics has to be interpreted in the context of environmental factors. For example, even if an individual has a high genetic risk for alcoholism, that risk is lessened if that individual is never exposed to alcohol. [26]

Predictive performance in humans

For humans, while most polygenic scores are not predictive enough to diagnose disease, they could be used in addition to other covariates (such as age, BMI, smoking status) to improve estimates of disease susceptibility. [26] [8] [13] However, even if a polygenic score might not make reliable diagnostic predictions across an entire population, it may still make very accurate predictions for outliers at extreme high or low risk. The clinical utility may therefore still be large even if average measures of prediction performance are moderate. [11]

Although issues such as poorer predictive performance in individuals of non-European ancestry limit widespread use, [34] several authors have noted that some causal variants for some conditions, but not others, are shared between Europeans and other groups across different continents for (e.g.) BMI and type 2 diabetes in African populations [35] as well as schizophrenia in Chinese populations. [36] Other researchers recognize that polygenic under-prediction in non-European population should galvanize new GWAS that prioritize greater genetic diversity in order to maximize the potential health benefits brought about by predictive polygenic scores. [37] Significant scientific efforts are being made to this end. [38]

Embryo genetic screening is common with millions biopsied and tested each year worldwide. Genotyping methods have been developed so that the embryo genotype can be determined to high precision. [39] [40] Testing for aneuploidy and monogenetic diseases has increasingly become established over decades, whereas tests for polygenic diseases have begun to be employed more recently, having been first used in embryo selection in 2019. [41] The use of polygenic scores for embryo selection has been criticised due to alleged ethical and safety issues as well as limited practical utility. [42] [43] [44] However, trait-specific evaluations claiming the contrary have been put forth [45] [46] and ethical arguments for PGS-based embryo selection have also been made. [47] [48] [49] The topic continues to be an active area of research not only within genomics but also within clinical applications and ethics.

As of 2019, polygenic scores from well over a hundred phenotypes have been developed from genome-wide association statistics. [50] These include scores that can be categorized as anthropometric, behavioural, cardiovascular, non-cancer illness, psychiatric/neurological, and response to treatment/medication. [51]

Predicted vs actual height using a polygenic risk score Predicted vs actual height using a polygenic risk score.png
Predicted vs actual height using a polygenic risk score

Examples of disease prediction performance

When predicting disease risk, a PGS gives a continuous score that estimates the risk of having or getting the disease, within some pre-defined time span. A common metric for evaluating such continuous estimates of yes/no questions (see Binary classification) is the area under the ROC curve (AUC). Some example results of PGS performance, as measured in AUC (0 ≤ AUC ≤ 1 where a larger number implies better prediction), include:

  • In 2018, AUC ≈ 0.64 for coronary disease using ~120,000 British individuals. [52] A
  • In 2019, AUC ≈ 0.63 for breast cancer, developed from ~95,000 case subjects and ~75,000 controls of European ancestry. [53]
  • In 2019, AUC ≈ 0.71 for hypothyroidism for ~24,000 case subjects and ~463,00 controls of European ancestry. [11]
  • In 2020, AUC ≈ 0.71 for schizophrenia, using 90 cohorts including ~67,000 case subjects and ~94,000 controls with ~80% of European ancestry and ~20% of East Asian ancestry. [54] Note that these results use purely genetic information as input; including additional information such as age and sex often greatly improves the predictions. The coronary disease predictor and the hypothyroidism predictor above achieve AUCs of ~ 0.80 and ~0.78, respectively, when also including age and sex. [4] [11]

Importance of sample size

PGS predictor performance increases with the dataset sample size available for training. Here illustrated for hypertension, hypothyroidism and type 2 diabetes. The x-axis labels number of cases (i.e. individuals with the disease) present in the training data and uses a logarithmic scale. The entire range is from 1,000 cases up to over 100,000 cases. The numbers of controls (i.e. individuals without the disease) in the training data were much larger than the numbers of cases. These particular predictors were trained using the LASSO algorithm. PGSPredictionPerformance VS sampleSize RabenLelloEtAl.svg
PGS predictor performance increases with the dataset sample size available for training. Here illustrated for hypertension, hypothyroidism and type 2 diabetes. The x-axis labels number of cases (i.e. individuals with the disease) present in the training data and uses a logarithmic scale. The entire range is from 1,000 cases up to over 100,000 cases. The numbers of controls (i.e. individuals without the disease) in the training data were much larger than the numbers of cases. These particular predictors were trained using the LASSO algorithm.

The performance of a polygenic predictor is highly dependent on the size of the dataset that is available for analysis and ML training. Recent scientific progress in prediction power relies heavily on the creation and expansion of large biobanks containing data for both genotypes and phenotypes of very many individuals. As of 2021, there exist several biobanks with hundreds of thousands samples, i.e., data entries with both genetic and trait information for each individual (see for instance the incomplete list of biobanks).

With the use of these growing biobanks, data from many thousands of individuals are used to detect the relevant variants for a specific trait. Exactly how many are required depends very much on the trait in question. Typically, increasing levels of prediction are observed until a plateau phase where the performance levels off and does not change much when increasing the sample size even further. This is the limit of how accurate a polygenic predictor that only uses genetic information can be and is set by the heritability of the specific trait. The sample size required to reach this performance level for a certain trait is determined by the complexity of the underlying genetic architecture and the distribution of genetic variance in the sampled population. This sample size dependence is illustrated in the figure for hypothyroidism, hypertension and type 2 diabetes.

Note again, that current methods to construct polygenic predictors are sensitive to the ancestries present in the data. As of 2021, most available data have been primarily of populations with European ancestry, which is the reason why PGS generally perform better within this ancestry. The construction of more diverse biobanks with successful recruitment from all ancestries is required to rectify this skewed access to and benefits from PGS-based medicine. [37]

Clinical utility and current usage

A landmark study examining the role of polygenic risk scores in cardiovascular disease invigorated interest the clinical potential of polygenic scores. [4] This study demonstrated that an individual with the highest polygenic risk score (top 1%) had a lifetime cardiovascular risk >10% which was comparable to those with rare genetic variants. This comparison is important because clinical practice can be influenced by knowing which individuals have this rare genetic cause of cardiovascular disease. [55] Since this study, polygenic risk scores have shown promise for disease prediction across other traits. [8] Polygenic risk scores have been studied heavily in obesity, coronary artery disease, diabetes, breast cancer, prostate cancer, Alzheimer's disease and psychiatric diseases. [9]

As of January 2021 providing PRS directly to individuals was undergoing research trials in health systems around the world, but is not yet offered as standard of care. [56] Most use is therefore through consumer genetic testing, where a number of private companies report PRS for a number of diseases and traits. Consumers download their genotype (genetic variant) data and upload them into online PRS calculators, e.g. Scripps Health, Impute.me or Color Genomics. [57] The most frequently reported motivation for individuals to seek out PRS reports is general curiosity (98.2%), and the reactions are generally mixed with common misinterpretations. [58] It is speculated that personal use of PRS could contribute to treatment choices, but that more data is needed. [56] As of 2020 a more typical use was that clinicians face individuals with commercially derived disease-specific PRS in the expectation that the clinician will interpret them, something that may create extra burdens for the clinical care system. [56] [59]

Challenges and risks in clinical contexts

At a fundamental level, the use of polygenic scores in clinical context will have similar technical issues as existing tools. For example, if a tool is not validated in a diverse population, then it may exacerbate disparities with unequal efficacy across populations. This is especially important in genetics where, as of 2018, a majority of the studies to date have been done in Europeans. [60] Other challenges that can arise include how precisely the polygenic risk score can be calculated and how precise it needs to be for clinical utility. [61] Even if a polygenic score is accurately calculated and calibrated for a population, its interpretation must be approached with caution. First, it is important to realize that polygenic traits are different from monogenic traits; the latter stem from fewer genetic loci and can be detected more accurately. Genetic tests are often difficult to interpret and require genetic counseling. Currently, polygenic-score results are being shared with clinicians. [62] Since monogenic genetic testing is far more mature than polygenic scores, we can look there for approximating the clinical impact of polygenic scores. While some studies have found negative effects of returning monogenic genetic results to patients, [63] the majority of studies have that negative consequences are minor. [64]

Benefits in humans

Unlike many other clinical laboratory or imaging methods, an individual's germ-line genetic risk can be calculated at birth for a variety of diseases after sequencing their DNA once. [61] [8] Thus, polygenic scores may ultimately be a cost-effective measure that can be informative for clinical management. Moreover, the polygenic risk score may be informative across an individual's lifespan helping to quantify the genetic lifelong risk for certain diseases. For many diseases, having a strong genetic risk can results in an earlier onset of presentation (e.g. Familial Hypercholesterolemia). [65] Recognizing an increased genetic burden earlier can allow clinicians to intervene earlier and avoid delayed diagnoses. Polygenic score can be combined with traditional risk factors to increase clinical utility. [66] [67] [68] [69] For example, polygenic risk scores may help improve diagnosis of diseases. This is especially evident in distinguishing Type 1 from Type 2 Diabetes. [70] Likewise, a polygenic risk score based approach may reduce invasive diagnostic procedures as demonstrated in Celiac disease. [71] Polygenic scores may also empower individuals to alter their lifestyles to reduce risk for diseases. While there is some evidence for behavior modification as a result of knowing one's genetic predisposition, [72] [73] [74] more work is required to evaluate risk-modifying behaviors across a variety of different disease states. [61] Population level screening is another use case for polygenic scores. The goal of population-level screening is to identify patients at high risk for a disease who would benefit from an existing treatment. [75] Polygenic scores can identify a subset of the population at high risk that could benefit from screening. Several clinical studies are being done in breast cancer [76] [77] and heart disease is another area that could benefit from a polygenic score based screening program. [61]

Non-predictive applications

A variety of applications exists for polygenic scores. In humans, polygenic scores were originally computed in an effort to predict the prevalence and etiology of complex, heritable diseases, which are typically affected by many genetic variants that individually confer a small effect to overall risk. Additionally, a polygenic score can be used in several different ways: as a lower bound to test whether heritability estimates may be biased; as a measure of genetic overlap of traits (genetic correlation), which might indicate e.g. shared genetic bases for groups of mental disorders; as a means to assess group differences in a trait such as height, or to examine changes in a trait over time due to natural selection indicative of a soft selective sweep (as e.g. for intelligence where the changes in frequency would be too small to detect on each individual hit but not on the overall polygenic score); in Mendelian randomization (assuming no pleiotropy with relevant traits); to detect & control for the presence of genetic confounds in outcomes (e.g. the correlation of schizophrenia with poverty); or to investigate gene–environment interactions and correlations. Polygenic scores also have useful statistical properties in (genomic) association testing, for instance to account for outcome-specific background effects and/or improve statistical power. [78] [79] [80]

Applications in non-human species

The benefit of polygenic scores is that they can be used to predict the future for crops, animal breeding, and humans alike. Although the same basic concepts underlie these areas of prediction, they face different challenges that require different methodologies. The ability to produce very large family size in nonhuman species, accompanied by deliberate selection, leads to a smaller effective population, higher degrees of linkage disequilibrium among individuals, and a higher average genetic relatedness among individuals within a population. For example, members of plant and animal breeds that humans have effectively created, such as modern maize or domestic cattle, are all technically "related". In human genomic prediction, by contrast, unrelated individuals in large populations are selected to estimate the effects of common SNPs. Because of smaller effective population in livestock, the mean coefficient of relationship between any two individuals is likely high, and common SNPs will tag causal variants at greater physical distance than for humans; this is the major reason for lower SNP-based heritability estimates for humans compared to livestock. In both cases, however, sample size is key for maximizing the accuracy of genomic prediction. [81]

While modern genomic prediction scoring in humans is generally referred to as a "polygenic score" (PGS) or a "polygenic risk score" (PRS), in livestock the more common term is "genomic estimated breeding value", or GEBV (similar to the more familiar "EBV", but with genotypic data). Conceptually, a GEBV is the same as a PGS: a linear function of genetic variants that are each weighted by the apparent effect of the variant. Despite this, polygenic prediction in livestock is useful for a fundamentally different reason than for humans. In humans, a PRS is used for the prediction of individual phenotype, while in livestock a GEBV is typically used to predict the offspring's average value of a phenotype of interest in terms of the genetic material it inherited from a parent. In this way, a GEBV can be understood as the average of the offspring of an individual or pair of individual animals. GEBVs are also typically communicated in the units of the trait of interest. For example, the expected increase in milk production of the offspring of a specific parent compared to the offspring from a reference population might be a typical way of using a GEBV in dairy cow breeding and selection. [81]

Notes

A. ^ Preprint lists AUC for pure PRS while the published version of the paper only lists AUC for PGS combined with age, sex and genotyping array information.

Related Research Articles

<span class="mw-page-title-main">Single-nucleotide polymorphism</span> Single nucleotide in genomic DNA at which different sequence alternatives exist

In genetics and bioinformatics, a single-nucleotide polymorphism is a germline substitution of a single nucleotide at a specific position in the genome that is present in a sufficiently large fraction of considered population.

A quantitative trait locus (QTL) is a locus that correlates with variation of a quantitative trait in the phenotype of a population of organisms. QTLs are mapped by identifying which molecular markers correlate with an observed trait. This is often an early step in identifying the actual genes that cause the trait variation.

The International HapMap Project was an organization that aimed to develop a haplotype map (HapMap) of the human genome, to describe the common patterns of human genetic variation. HapMap is used to find genetic variants affecting health, disease and responses to drugs and environmental factors. The information produced by the project is made freely available for research.

<span class="mw-page-title-main">Gene–environment interaction</span> Response to the same environmental variation differently by different genotypes

Gene–environment interaction is when two different genotypes respond to environmental variation in different ways. A norm of reaction is a graph that shows the relationship between genes and environmental factors when phenotypic differences are continuous. They can help illustrate GxE interactions. When the norm of reaction is not parallel, as shown in the figure below, there is a gene by environment interaction. This indicates that each genotype responds to environmental variation in a different way. Environmental variation can be physical, chemical, biological, behavior patterns or life events.

Imaging genetics refers to the use of anatomical or physiological imaging technologies as phenotypic assays to evaluate genetic variation. Scientists that first used the term imaging genetics were interested in how genes influence psychopathology and used functional neuroimaging to investigate genes that are expressed in the brain.

<span class="mw-page-title-main">Personalized medicine</span> Medical model that tailors medical practices to the individual patient

Personalized medicine, also referred to as precision medicine, is a medical model that separates people into different groups—with medical decisions, practices, interventions and/or products being tailored to the individual patient based on their predicted response or risk of disease. The terms personalized medicine, precision medicine, stratified medicine and P4 medicine are used interchangeably to describe this concept though some authors and organisations use these expressions separately to indicate particular nuances.

In molecular biology, SNP array is a type of DNA microarray which is used to detect polymorphisms within a population. A single nucleotide polymorphism (SNP), a variation at a single site in DNA, is the most frequent type of variation in the genome. Around 335 million SNPs have been identified in the human genome, 15 million of which are present at frequencies of 1% or higher across different populations worldwide.

<span class="mw-page-title-main">Genome-wide association study</span> Study of genetic variants in different individuals

In genomics, a genome-wide association study, is an observational study of a genome-wide set of genetic variants in different individuals to see if any variant is associated with a trait. GWA studies typically focus on associations between single-nucleotide polymorphisms (SNPs) and traits like major human diseases, but can equally be applied to any other genetic variants and any other organisms.

Personal genomics or consumer genetics is the branch of genomics concerned with the sequencing, analysis and interpretation of the genome of an individual. The genotyping stage employs different techniques, including single-nucleotide polymorphism (SNP) analysis chips, or partial or full genome sequencing. Once the genotypes are known, the individual's variations can be compared with the published literature to determine likelihood of trait expression, ancestry inference and disease risk.

Population structure is the presence of a systematic difference in allele frequencies between subpopulations. In a randomly mating population, allele frequencies are expected to be roughly similar between groups. However, mating tends to be non-random to some degree, causing structure to arise. For example, a barrier like a river can separate two groups of the same species and make it difficult for potential mates to cross; if a mutation occurs, over many generations it can spread and become common in one subpopulation while being completely absent in the other.

In multivariate quantitative genetics, a genetic correlation is the proportion of variance that two traits share due to genetic causes, the correlation between the genetic influences on a trait and the genetic influences on a different trait estimating the degree of pleiotropy or causal overlap. A genetic correlation of 0 implies that the genetic effects on one trait are independent of the other, while a correlation of 1 implies that all of the genetic influences on the two traits are identical. The bivariate genetic correlation can be generalized to inferring genetic latent variable factors across > 2 traits using factor analysis. Genetic correlation models were introduced into behavioral genetics in the 1970s–1980s.

The missing heritability problem is the fact that single genetic variations cannot account for much of the heritability of diseases, behaviors, and other phenotypes. This is a problem that has significant implications for medicine, since a person's susceptibility to disease may depend more on the combined effect of all the genes in the background than on the disease genes in the foreground, or the role of genes may have been severely overestimated.

Predictive genomics is at the intersection of multiple disciplines: predictive medicine, personal genomics and translational bioinformatics. Specifically, predictive genomics deals with the future phenotypic outcomes via prediction in areas such as complex multifactorial diseases in humans. To date, the success of predictive genomics has been dependent on the genetic framework underlying these applications, typically explored in genome-wide association (GWA) studies. The identification of associated single-nucleotide polymorphisms underpin GWA studies in complex diseases that have ranged from Type 2 Diabetes (T2D), Age-related macular degeneration (AMD) and Crohn's disease.

Single nucleotide polymorphism annotation is the process of predicting the effect or function of an individual SNP using SNP annotation tools. In SNP annotation the biological information is extracted, collected and displayed in a clear form amenable to query. SNP functional annotation is typically performed based on the available information on nucleic acid and protein sequences.

Elective genetic and genomic testing are DNA tests performed for an individual who does not have an indication for testing. An elective genetic test analyzes selected sites in the human genome while an elective genomic test analyzes the entire human genome. Some elective genetic and genomic tests require a physician to order the test to ensure that individuals understand the risks and benefits of testing as well as the results. Other DNA-based tests, such as a genealogical DNA test do not require a physician's order. Elective testing is generally not paid for by health insurance companies. With the advent of personalized medicine, also called precision medicine, an increasing number of individuals are undertaking elective genetic and genomic testing.

Naomi Ruth Wray is an Australian statistical geneticist at the University of Queensland, where she is a Professorial Research Fellow at the Institute for Molecular Bioscience and an Affiliate Professor in the Queensland Brain Institute. She is also a National Health and Medical Research Council (NHMRC) Principal Research Fellow and, along with Peter Visscher and Jian Yang, is one of the three executive team members of the NHMRC-funded Program in Complex Trait Genomics. Naomi pioneered the use of polygenic scores in human genetics, and has made significant contributions to both the development of methods and their clinical use.

In statistical genetics, linkage disequilibrium score regression is a technique that aims to quantify the separate contributions of polygenic effects and various confounding factors, such as population stratification, based on summary statistics from genome-wide association studies (GWASs). The approach involves using regression analysis to examine the relationship between linkage disequilibrium scores and the test statistics of the single-nucleotide polymorphisms (SNPs) from the GWAS. Here, the "linkage disequilibrium score" for a SNP "is the sum of LD r2 measured with all other SNPs".

The Omnigenic Model, first proposed by Evan A. Boyle, Yang I. Li, and Jonathan K. Pritchard, describes a hypothesis regarding the heritability of complex traits. Expanding beyond polygenes, the authors propose that all genes expressed within a cell affect the expression of a given trait. In addition, the model states that the peripheral genes, ones that do not have a direct impact on expression, explain more heritability of traits than core genes, ones that have a direct impact on expression. The process that the authors propose that facilitates this effect is called “network pleiotropy”, in which peripheral genes can affect core genes, not by having a direct effect, but rather by virtue of being mediated within the same cell.

Impute.me. was an open-source non-profit web application that allowed members of the public to use their data from direct-to-consumer (DTC) genetic tests to calculate polygenic risk scores (PRS) for complex diseases and cognitive and personality traits. In July 2022, Lasse Folkerson, initiator and operator of impute.me, took the website offline.

Personality traits are patterns of thoughts, feelings and behaviors that reflect the tendency to respond in certain ways under certain circumstances.

References

  1. Gregory, Gillian; Das Gupta, Kuheli; Meiser, Bettina; Barlow‐Stewart, Kristine; Geelan‐Small, Peter; Kaur, Rajneesh; Scheepers‐Joynt, Maatje; McInerny, Simone; Taylor, Shelby; Antill, Yoland; Salmon, Lucinda; Smyth, Courtney; Young, Mary‐Anne; James, Paul A; Yanes, Tatiane (February 2022). "Polygenic risk in familial breast cancer: Changing the dynamics of communicating genetic risk". Journal of Genetic Counseling. 31 (1): 120–129. doi:10.1002/jgc4.1458. PMID   34223688. S2CID   235732957.
  2. 1 2 de Vlaming R, Groenen PJ (2015). "The Current and Future Use of Ridge Regression for Prediction in Quantitative Genetics". BioMed Research International. 2015: 143712. doi: 10.1155/2015/143712 . PMC   4529984 . PMID   26273586.
  3. Lewis CM, Vassos E (November 2017). "Prospects for using risk scores in polygenic medicine". Genome Medicine. 9 (1): 96. doi: 10.1186/s13073-017-0489-y . PMC   5683372 . PMID   29132412.
  4. 1 2 3 4 Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, et al. (September 2018). "Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations". Nature Genetics. 50 (9): 1219–1224. doi:10.1038/s41588-018-0183-z. PMC   6128408 . PMID   30104762.
  5. Yanes T, Meiser B, Kaur R, Scheepers-Joynt M, McInerny S, Taylor S, et al. (March 2020). "Uptake of polygenic risk information among women at increased risk of breast cancer". Clinical Genetics. 97 (3): 492–501. doi:10.1111/cge.13687. hdl: 11343/286783 . PMID   31833054. S2CID   209342044.
  6. 1 2 Vilhjálmsson BJ, Yang J, Finucane HK, Gusev A, Lindström S, Ripke S, et al. (October 2015). "Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores". American Journal of Human Genetics. 97 (4): 576–592. doi:10.1016/j.ajhg.2015.09.001. PMC   4596916 . PMID   26430803.
  7. Dudbridge F (March 2013). "Power and predictive accuracy of polygenic risk scores". PLOS Genetics. 9 (3): e1003348. doi: 10.1371/journal.pgen.1003348 . PMC   3605113 . PMID   23555274.
  8. 1 2 3 4 5 Torkamani A, Wineinger NE, Topol EJ (September 2018). "The personal and clinical utility of polygenic risk scores". Nature Reviews. Genetics. 19 (9): 581–590. doi:10.1038/s41576-018-0018-x. PMID   29789686. S2CID   46893131.
  9. 1 2 Lambert SA, Abraham G, Inouye M (November 2019). "Towards clinical utility of polygenic risk scores". Human Molecular Genetics. 28 (R2): R133–R142. doi: 10.1093/hmg/ddz187 . PMID   31363735.
  10. Regalado A (8 March 2019). "23andMe thinks polygenic risk scores are ready for the masses, but experts aren't so sure". MIT Technology Review. Retrieved 2020-08-14.
  11. 1 2 3 4 5 Lello L, Raben TG, Yong SY, Tellier LC, Hsu SD (October 2019). "Genomic Prediction of 16 Complex Disease Risks Including Heart Attack, Diabetes, Breast and Prostate Cancer". Scientific Reports. 9 (1): 15286. Bibcode:2019NatSR...915286L. doi: 10.1038/s41598-019-51258-x . PMC   6814833 . PMID   31653892.
  12. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J (July 2017). "10 Years of GWAS Discovery: Biology, Function, and Translation". American Journal of Human Genetics. 101 (1): 5–22. doi:10.1016/j.ajhg.2017.06.005. PMC   5501872 . PMID   28686856.
  13. 1 2 Spiliopoulou A, Nagy R, Bermingham ML, Huffman JE, Hayward C, Vitart V, et al. (July 2015). "Genomic prediction of complex human traits: relatedness, trait architecture and predictive meta-models". Human Molecular Genetics. 24 (14): 4167–4182. doi:10.1093/hmg/ddv145. PMC   4476450 . PMID   25918167.
  14. Spindel JE, McCouch SR (December 2016). "When more is better: how data sharing would accelerate genomic selection of crop plants". The New Phytologist. 212 (4): 814–826. doi: 10.1111/nph.14174 . PMID   27716975.
  15. "Modern genetics will improve health and usher in "designer" children". The Economist. 2019-11-09. Retrieved 2021-04-12.
  16. "Test could predict risk of future heart disease for just £40". The Guardian. 2018-10-08. Retrieved 2021-04-12.
  17. 1 2 Raben TG, Lello L, Widen E, Hsu SD (2021-01-14). "From Genotype to Phenotype: polygenic prediction of complex human traits". arXiv: 2101.05870 [q-bio].
  18. "Big picture genetic scoring approach reliably predicts heart disease". Science Daily. 2019-06-11. Retrieved 2021-04-12.
  19. Weedon MN, McCarthy MI, Hitman G, Walker M, Groves CJ, Zeggini E, et al. (October 2006). "Combining information from common type 2 diabetes risk polymorphisms improves disease prediction". PLOS Medicine. 3 (10): e374. doi: 10.1371/journal.pmed.0030374 . PMC   1584415 . PMID   17020404.
  20. Meuwissen TH, Hayes BJ, Goddard ME (April 2001). "Prediction of total genetic value using genome-wide dense marker maps". Genetics. 157 (4): 1819–1829. doi:10.1093/genetics/157.4.1819. PMC   1461589 . PMID   11290733.
  21. Crouch DJ, Bodmer WF (August 2020). "Polygenic inheritance, GWAS, polygenic risk scores, and the search for functional variants". Proceedings of the National Academy of Sciences of the United States of America. 117 (32): 18924–18933. Bibcode:2020PNAS..11718924C. doi: 10.1073/pnas.2005634117 . PMC   7431089 . PMID   32753378.
  22. Wray NR, Goddard ME, Visscher PM (October 2007). "Prediction of individual genetic risk to disease from genome-wide association studies". Genome Research. 17 (10): 1520–1528. doi:10.1101/gr.6665407. PMC   1987352 . PMID   17785532.
  23. Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF, Sklar P (August 2009). "Common polygenic variation contributes to risk of schizophrenia and bipolar disorder". Nature. 460 (7256): 748–752. Bibcode:2009Natur.460..748P. doi:10.1038/nature08185. PMC   3912837 . PMID   19571811.
  24. Choi SW, Mak TS, O'Reilly PF (September 2020). "Tutorial: a guide to performing polygenic risk score analyses". Nature Protocols. 15 (9): 2759–2772. doi:10.1038/s41596-020-0353-1. PMC   7612115 . PMID   32709988. S2CID   220732490.
  25. Wand H, Lambert SA, Tamburro C, Iacocca MA, O'Sullivan JW, Sillari C, et al. (March 2021). "Improving reporting standards for polygenic scores in risk prediction studies". Nature. 591 (7849): 211–219. Bibcode:2021Natur.591..211W. doi:10.1038/s41586-021-03243-6. PMC   8609771 . PMID   33692554.
  26. 1 2 3 Lewis CM, Vassos E (May 2020). "Polygenic risk scores: from research tools to clinical instruments". Genome Medicine. 12 (1): 44. doi: 10.1186/s13073-020-00742-5 . PMC   7236300 . PMID   32423490.
  27. Vattikuti S, Lee JJ, Chang CC, Hsu SD, Chow CC (2014). "Applying compressed sensing to genome-wide association studies". GigaScience. 3 (1): 10. doi: 10.1186/2047-217X-3-10 . PMC   4078394 . PMID   25002967.
  28. Ge T, Chen CY, Ni Y, Feng YA, Smoller JW (April 2019). "Polygenic prediction via Bayesian regression and continuous shrinkage priors". Nature Communications. 10 (1): 1776. Bibcode:2019NatCo..10.1776G. doi:10.1038/s41467-019-09718-5. PMC   6467998 . PMID   30992449.
  29. Meuwissen TH, Hayes BJ, Goddard ME (April 2001). "Prediction of total genetic value using genome-wide dense marker maps". Genetics. 157 (4): 1819–1829. doi:10.1093/genetics/157.4.1819. PMC   1461589 . PMID   11290733.
  30. Privé F, Arbel J, Vilhjálmsson BJ (December 2020). "LDpred2: better, faster, stronger". Bioinformatics. 36 (22–23): 5424–5431. doi:10.1093/bioinformatics/btaa1029. PMC   8016455 . PMID   33326037.
  31. Márquez-Luna C, Loh PR, Price AL (December 2017). "Multiethnic polygenic risk scores improve risk prediction in diverse populations". Genetic Epidemiology. 41 (8): 811–823. doi:10.1002/gepi.22083. PMC   5726434 . PMID   29110330.
  32. Hu Y, Lu Q, Powles R, Yao X, Yang C, Fang F, et al. (June 2017). Rigoutsos I (ed.). "Leveraging functional annotations in genetic risk prediction for human complex diseases". PLOS Computational Biology. 13 (6): e1005589. Bibcode:2017PLSCB..13E5589H. doi: 10.1371/journal.pcbi.1005589 . PMC   5481142 . PMID   28594818.
  33. Ni G, Zeng J, Revez JA, Wang Y, Zheng Z, Ge T, et al. (November 2021). "A Comparison of Ten Polygenic Score Methods for Psychiatric Disorders Applied Across Multiple Cohorts". Biological Psychiatry. 90 (9): 611–620. doi:10.1016/j.biopsych.2021.04.018. PMC   8500913 . PMID   34304866.
  34. Duncan L, Shen H, Gelaye B, Meijsen J, Ressler K, Feldman M, et al. (July 2019). "Analysis of polygenic risk score usage and performance in diverse human populations". Nature Communications. 10 (1): 3328. Bibcode:2019NatCo..10.3328D. doi:10.1038/s41467-019-11112-0. PMC   6658471 . PMID   31346163.
  35. Wang Y, Guo J, Ni G, Yang J, Visscher PM, Yengo L (July 2020). "Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations". Nature Communications. 11 (1): 3865. Bibcode:2020NatCo..11.3865W. doi:10.1038/s41467-020-17719-y. PMC   7395791 . PMID   32737319.
  36. Li Z, Chen J, Yu H, He L, Xu Y, Zhang D, et al. (November 2017). "Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia" (PDF). Nature Genetics. 49 (11): 1576–1583. doi:10.1038/ng.3973. PMID   28991256. S2CID   205355668.
  37. 1 2 Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ (April 2019). "Clinical use of current polygenic risk scores may exacerbate health disparities". Nature Genetics. 51 (4): 584–591. doi:10.1038/s41588-019-0379-x. PMC   6563838 . PMID   30926966.
  38. "Diversity and Inclusion". All of Us Research Program | NIH. 2020-06-24. Retrieved 2023-05-24.
  39. Zeevi DA, Backenroth D, Hakam-Spector E, Renbaum P, Mann T, Zahdeh F, et al. (July 2021). "Expanded clinical validation of Haploseek for comprehensive preimplantation genetic testing". Genetics in Medicine. 23 (7): 1334–1340. doi: 10.1038/s41436-021-01145-6 . PMID   33772222. S2CID   232377300.
  40. Treff NR, Zimmerman R, Bechor E, Hsu J, Rana B, Jensen J, et al. (August 2019). "Validation of concurrent preimplantation genetic testing for polygenic and monogenic disorders, structural rearrangements, and whole and segmental chromosome aneuploidy with a single universal platform". European Journal of Medical Genetics. 62 (8): 103647. doi: 10.1016/j.ejmg.2019.04.004 . PMID   31026593.
  41. Carey Goldberg (2021-09-17). "Picking Embryos With Best Health Odds Sparks New DNA Debate". Bloomberg News . Archived from the original on 2021-09-17. Aurea appears to be the first child born after a new type of DNA testing that gave her a "polygenic risk score." ... Her parents underwent fertility treatment in 2019 ...
  42. Birney E (11 November 2019). "Why using genetic risk scores on embryos is wrong". ewanbirney.com. Retrieved 2020-12-16.
  43. Karavani E, Zuk O, Zeevi D, Barzilai N, Stefanis NC, Hatzimanolis A, et al. (November 2019). "Screening Human Embryos for Polygenic Traits Has Limited Utility". Cell. 179 (6): 1424–1435.e8. doi:10.1016/j.cell.2019.10.033. PMC   6957074 . PMID   31761530.
  44. Lázaro-Muñoz G, Pereira S, Carmi S, Lencz T (March 2021). "Screening embryos for polygenic conditions and traits: ethical considerations for an emerging technology". Genetics in Medicine. 23 (3): 432–434. doi:10.1038/s41436-020-01019-3. PMC   7936952 . PMID   33106616.
  45. Treff NR, Eccles J, Marin D, Messick E, Lello L, Gerber J, et al. (June 2020). "Preimplantation Genetic Testing for Polygenic Disease Relative Risk Reduction: Evaluation of Genomic Index Performance in 11,883 Adult Sibling Pairs". Genes. 11 (6): 648. doi: 10.3390/genes11060648 . PMC   7349610 . PMID   32545548.
  46. Treff NR, Eccles J, Lello L, Bechor E, Hsu J, Plunkett K, et al. (2019-12-04). "Utility and First Clinical Application of Screening Embryos for Polygenic Disease Risk Reduction". Frontiers in Endocrinology. 10 (845): 845. doi: 10.3389/fendo.2019.00845 . PMC   6915076 . PMID   31920964.
  47. Munday S, Savulescu J (January 2021). "Three models for the regulation of polygenic scores in reproduction". Journal of Medical Ethics. 47 (12): e91. doi: 10.1136/medethics-2020-106588 . PMC   8639919 . PMID   33462079.
  48. Kemper JM, Gyngell C, Savulescu J (September 2019). "Subsidizing PGD: The Moral Case for Funding Genetic Selection". Journal of Bioethical Inquiry. 16 (3): 405–414. doi: 10.1007/s11673-019-09932-2 . PMC   6831526 . PMID   31418161.
  49. Savulescu J (October 2001). Francis L (ed.). "Procreative beneficence: why we should select the best children". Bioethics. 15 (5–6): 413–426. doi:10.1093/oxfordhb/9780199981878.013.26. ISBN   978-0-19-998187-8. PMID   12058767.
  50. "The Polygenic Score (PGS) Catalog". Polygenic Score (PGS) Catalog. Retrieved 29 April 2020. An open database of polygenic scores and the relevant metadata required for accurate application and evaluation
  51. Richardson TG, Harrison S, Hemani G, Davey Smith G (March 2019). "An atlas of polygenic risk score associations to highlight putative causal relationships across the human phenome". eLife. 8: e43657. doi: 10.7554/eLife.43657 . PMC   6400585 . PMID   30835202.
  52. Khera A, Chaggin M, Aragam KG, Emdin CA, Klarin D, Haas ME, Roselli C, Natarajan P, Kathiresan S (2017-11-15). "Genome-wide polygenic score to identify a monogenic risk-equivalent for coronary disease". bioRxiv   10.1101/218388 .
  53. Mavaddat N, Michailidou K, Dennis J, Lush M, Fachal L, Lee A, et al. (January 2019). "Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes". American Journal of Human Genetics. 104 (1): 21–34. doi: 10.1016/j.ajhg.2018.11.002 . PMC   6323553 . PMID   30554720.
  54. Ripke S, Walters JT, O'Donovan MC, et al. (Schizophrenia Working Group of the Psychiatric Genomics Consortium) (2020-09-12). "Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia". medRxiv   10.1101/2020.09.12.20192922 .
  55. Wray NR, Lin T, Austin J, McGrath JJ, Hickie IB, Murray GK, Visscher PM (January 2021). "From Basic Science to Clinical Application of Polygenic Risk Scores: A Primer". JAMA Psychiatry. 78 (1): 101–109. doi:10.1001/jamapsychiatry.2020.3049. ISSN   2168-622X. PMID   32997097. S2CID   222169651.
  56. 1 2 3 Wray NR, Lin T, Austin J, McGrath JJ, Hickie IB, Murray GK, Visscher PM (January 2021). "From Basic Science to Clinical Application of Polygenic Risk Scores: A Primer". JAMA Psychiatry. 78 (1): 101–109. doi:10.1001/jamapsychiatry.2020.3049. ISSN   2168-622X. PMID   32997097. S2CID   222169651.
  57. Brockman DG, Petronio L, Dron JS, Kwon BC, Vosburg T, Nip L, et al. (October 2021). "Design and user experience testing of a polygenic score report: a qualitative study of prospective users". BMC Medical Genomics. 14 (1): 238. doi: 10.1186/s12920-021-01056-0 . PMC   8485114 . PMID   34598685.
  58. Peck L, Borle K, Folkersen L, Austin J (July 2021). "Why do people seek out polygenic risk scores for complex disorders, and how do they understand and react to results?". European Journal of Human Genetics. 30 (1): 81–87. doi:10.1038/s41431-021-00929-3. PMC   8738734 . PMID   34276054. S2CID   236090477.
  59. Millward M, Tiller J, Bogwitz M, Kincaid H, Taylor S, Trainer AH, Lacaze P (September 2020). "Impact of direct-to-consumer genetic testing on Australian clinical genetics services". European Journal of Medical Genetics. 63 (9): 103968. doi:10.1016/j.ejmg.2020.103968. PMID   32502649.
  60. Sirugo G, Williams SM, Tishkoff SA (March 2019). "The Missing Diversity in Human Genetic Studies". Cell. 177 (1): 26–31. doi:10.1016/j.cell.2019.02.048. PMC   7380073 . PMID   30901543.
  61. 1 2 3 4 Adeyemo, Adebowale; Balaconis, Mary K.; Darnes, Deanna R.; Fatumo, Segun; Granados Moreno, Palmira; Hodonsky, Chani J.; Inouye, Michael; Kanai, Masahiro; Kato, Kazuto; Knoppers, Bartha M.; Lewis, Anna C. F.; Martin, Alicia R.; McCarthy, Mark I.; Meyer, Michelle N.; Okada, Yukinori; Richards, J. Brent; Richter, Lucas; Ripatti, Samuli; Rotimi, Charles N.; Sanderson, Saskia C.; Sturm, Amy C.; Verdugo, Ricardo A.; Widen, Elisabeth; Willer, Cristen J.; Wojcik, Genevieve L.; Zhou, Alicia (November 2021). "Responsible use of polygenic risk scores in the clinic: potential benefits, risks and gaps". Nature Medicine. 27 (11): 1876–1884. doi: 10.1038/s41591-021-01549-6 . PMID   34782789. S2CID   244131258.
  62. Brockman DG, Petronio L, Dron JS, Kwon BC, Vosburg T, Nip L, et al. (January 2021). "Design and user experience testing of a polygenic score report: a qualitative study of prospective users". p. 238. medRxiv   10.1101/2021.04.14.21255397 .
  63. Lineweaver TT, Bondi MW, Galasko D, Salmon DP (February 2014). "Effect of knowledge of APOE genotype on subjective and objective memory performance in healthy older adults". The American Journal of Psychiatry. 171 (2): 201–208. doi:10.1176/appi.ajp.2013.12121590. PMC   4037144 . PMID   24170170.
  64. Parens E, Appelbaum PS (May 2019). "On What We Have Learned and Still Need to Learn about the Psychosocial Impacts of Genetic Testing". The Hastings Center Report. 49 (Suppl 1): S2–S9. doi:10.1002/hast.1011. PMC   6640636 . PMID   31268574. S2CID   195786850.
  65. Varghese MJ (May 2014). "Familial hypercholesterolemia: A review". Annals of Pediatric Cardiology. 7 (2): 107–117. doi: 10.4103/0974-2069.132478 . PMC   4070199 . PMID   24987256.
  66. Ganna A, Magnusson PK, Pedersen NL, de Faire U, Reilly M, Arnlöv J, et al. (September 2013). "Multilocus genetic risk scores for coronary heart disease prediction". Arteriosclerosis, Thrombosis, and Vascular Biology. 33 (9): 2267–2272. doi: 10.1161/atvbaha.113.301218 . PMID   23685553. S2CID   182105.
  67. Merry AH (2010). Coronary heart disease in the Netherlands : incidence, etiology and risk prediction (Thesis). University of Maastricht. doi: 10.26481/dis.20101210am . ISBN   9789052789873.
  68. Nadir MA, Struthers AD (April 2011). "Family history of premature coronary heart disease and risk prediction". Heart. 97 (8): 684, author reply 684. doi:10.1136/hrt.2011.222265. PMID   21367743. S2CID   36394971.
  69. Neale B (2019-11-26). "Faculty Opinions recommendation of Genomic risk prediction of coronary artery disease in 480,000 adults: implications for primary prevention". Journal of the American College of Cardiology. doi: 10.3410/f.734171897.793567857 . S2CID   212766426.
  70. Oram RA, Patel K, Hill A, Shields B, McDonald TJ, Jones A, et al. (March 2016). "A Type 1 Diabetes Genetic Risk Score Can Aid Discrimination Between Type 1 and Type 2 Diabetes in Young Adults". Diabetes Care. 39 (3): 337–344. doi:10.2337/dc15-1111. PMC   5642867 . PMID   26577414.
  71. Sharp SA, Jones SE, Kimmitt RA, Weedon MN, Halpin AM, Wood AR, et al. (October 2020). "A single nucleotide polymorphism genetic risk score to aid diagnosis of coeliac disease: a pilot study in clinical care". Alimentary Pharmacology & Therapeutics. 52 (7): 1165–1173. doi: 10.1111/apt.15826 . PMID   32790217. S2CID   221127365.
  72. McBride CM, Koehly LM, Sanderson SC, Kaphingst KA (2010-03-01). "The behavioral response to personalized genetic information: will genetic risk profiles motivate individuals and families to choose more healthful behaviors?". Annual Review of Public Health. 31 (1): 89–103. doi: 10.1146/annurev.publhealth.012809.103532 . PMID   20070198.
  73. Saya S, McIntosh JG, Winship IM, Clendenning M, Milton S, Oberoi J, et al. (2020). "A Genomic Test for Colorectal Cancer Risk: Is This Acceptable and Feasible in Primary Care?". Public Health Genomics. 23 (3–4): 110–121. doi:10.1159/000508963. PMID   32688362. S2CID   220669421.
  74. Turnwald BP, Goyer JP, Boles DZ, Silder A, Delp SL, Crum AJ (January 2019). "Learning one's genetic risk changes physiology independent of actual genetic risk". Nature Human Behaviour. 3 (1): 48–56. doi:10.1038/s41562-018-0483-4. PMC   6874306 . PMID   30932047.
  75. Singh Y (November 2016). "Effectiveness of Screening Programmes for Detection of Major Congenital Heart Diseases". European Journal of Pediatrics. 175 (11): 1582. doi:10.26226/morressier.57d034ced462b80292382f40.
  76. Esserman LJ (2017-09-13). "The WISDOM Study: breaking the deadlock in the breast cancer screening debate". npj Breast Cancer. 3 (1): 34. doi:10.1038/s41523-017-0035-5. PMC   5597574 . PMID   28944288. S2CID   3313995.
  77. Farooq V, Serruys PW (July 2018). "Risk stratification and risk scores". In Wijns W (ed.). ESC CardioMed. Oxford University Press. pp. 1371–1384. doi:10.1093/med/9780198784906.003.0335. ISBN   978-0-19-878490-6.
  78. Mbatchou, J; Barnard, L; Backman, J; Marcketta, A; Kosmicki, JA; Ziyatdinov, A; Benner, C; O'Dushlaine, C; Barber, M; Boutkov, B; Habegger, L; Ferreira, M; Baras, A; Reid, J; Abecasis, G; Maxwell, E; Marchini, J (July 2021). "Computationally efficient whole-genome regression for quantitative and binary traits". Nature Genetics. 53 (7): 1097–1103. doi: 10.1038/s41588-021-00870-7 . PMID   34017140. S2CID   220044465.
  79. Jurgens, SJ; Pirruccello, JP; Choi, SH; Morrill, VN; Chaffin, M; Lubitz, SA; Lunetta, KL; Ellinor, PT (23 March 2023). "Adjusting for common variant polygenic scores improves yield in rare variant association analyses". Nature Genetics. 55 (4): 544–548. doi:10.1038/s41588-023-01342-w. PMID   36959364. S2CID   239054376.
  80. Bennett, D; O'Shea, D; Ferguson, J; Morris, D; Seoighe, C (1 October 2021). "Controlling for background genetic effects using polygenic scores improves the power of genome-wide association studies". Scientific Reports. 11 (1): 19571. Bibcode:2021NatSR..1119571B. doi:10.1038/s41598-021-99031-3. PMC   8486788 . PMID   34599249.
  81. 1 2 Wray NR, Kemper KE, Hayes BJ, Goddard ME, Visscher PM (April 2019). "Complex Trait Prediction from Genome Data: Contrasting EBV in Livestock to PRS in Humans: Genomic Prediction". Genetics. 211 (4): 1131–1141. doi:10.1534/genetics.119.301859. PMC   6456317 . PMID   30967442.