Polymer-based battery

Last updated

A polymer-based battery uses organic materials instead of bulk metals to form a battery. [1] Currently accepted metal-based batteries pose many challenges due to limited resources, negative environmental impact, and the approaching limit of progress. Redox active polymers are attractive options for electrodes in batteries due to their synthetic availability, high-capacity, flexibility, light weight, low cost, and low toxicity. [2] Recent studies have explored how to increase efficiency and reduce challenges to push polymeric active materials further towards practicality in batteries. Many types of polymers are being explored, including conductive, non-conductive, and radical polymers. Batteries with a combination of electrodes (one metal electrode and one polymeric electrode) are easier to test and compare to current metal-based batteries, however batteries with both a polymer cathode and anode are also a current research focus. Polymer-based batteries, including metal/polymer electrode combinations, should be distinguished from metal-polymer batteries, such as a lithium polymer battery, which most often involve a polymeric electrolyte, as opposed to polymeric active materials.

Contents

Organic polymers can be processed at relatively low temperatures, lowering costs. They also produce less carbon dioxide. [3]

History

Organic batteries are an alternative to the metal reaction battery technologies, and much research is taking place in this area.

An article titled "Plastic-Metal Batteries: New promise for the electric car" [4] wrote in 1982: "Two different organic polymers are being investigated for possible use in batteries" and indicated that the demo he gave was based on work begun in 1976.

Waseda University was approached by NEC in 2001, and began to focus on the organic batteries. In 2002, NEC researcher presented a paper on Piperidinoxyl Polymer technology, and by 2005 they presented an organic radical battery (ORB) based on a modified PTMA, poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl meth-acrylate). [5]

In 2006, Brown University announced a technology based on polypyrrole. [1] In 2007, Waseda announced a new ORB technology based on "soluble polymer, polynorborene with pendant nitroxide radical groups."

In 2015 researchers developed an efficient, conductive, electron-transporting polymer. The discovery employed a "conjugated redox polymer" design with a naphthalene-bithiophene polymer that has been used for transistors and solar cells. Doped with lithium ions it offered significant electronic conductivity and remained stable through 3,000 charge/discharge cycles. Polymers that conduct holes have been available for some time. The polymer exhibits the greatest power density for an organic material under practical measurement conditions. A battery could be 80% charged within 6 seconds. Energy density remained lower than inorganic batteries. [3]

Electrochemistry

Like metal-based batteries, the reaction in a polymer-based battery is between a positive and a negative electrode with different redox potentials. An electrolyte transports charges between these electrodes. For a substance to be a suitable battery active material, it must be able to participate in a chemically and thermodynamically reversible redox reaction. Unlike metal-based batteries, whose redox process is based on the valence charge of the metals, the redox process of polymer-based batteries is based on a change of state of charge in the organic material. [6] For a high energy density, the electrodes should have similar specific energies. [6]

Classification of active materials

The active organic material could be a p-type, n-type, or b-type. During charging, p-type materials are oxidized and produce cations, while n-types are reduced and produce anions. B-type organics could be either oxidized or reduced during charging or discharging. [6]

Charge and discharge

In a commercially available Li-ion battery, the Li+ ions are diffused slowly due to the required intercalation and can generate heat during charge or discharge. Polymer-based batteries, however, have a more efficient charge/discharge process, resulting in improved theoretical rate performance and increased cyclability. [3]

Charge

To charge a polymer-based battery, a current is applied to oxidize the positive electrode and reduce the negative electrode. The electrolyte salt compensates the charges formed. The limiting factors upon charging a polymer-based battery differ from metal-based batteries and include the full oxidation of the cathode organic, full reduction of the anode organic, or consumption of the electrolyte. [3]

Discharge

Upon discharge, the electrons go from the anode to cathode externally, while the electrolyte carries the released ions from the polymer. This process, and therefore the rate performance, is limited by the electrolyte ion travel and the electron-transfer rate constant, k0, of the reaction.

This electron transfer rate constant provides a benefit of polymer-based batteries, which typically have high values on the order of 10−1 cm s−1. The organic polymer electrodes are amorphous and swollen, which allows for a higher rate of ionic diffusion and further contributes to a better rate performance. [3] Different polymer reactions, however, have different reaction rates. While a nitroxyl radical has a high reaction rate, organodisulfades have significantly lower rates because bonds are broken and new bonds are formed. [7]

Batteries are commonly evaluated by their theoretical capacity (the total capacity of the battery if 100% of active material were utilized in the reaction). This value can be calculated as follows:

where m is the total mass of active material, n is the number of transferred electrons per molar mass of active material, M is the molar mass of active material, and F is Faraday's constant. [8]

Charge and discharge testing

Most polymer electrodes are tested in a metal-organic battery for ease of comparison to metal-based batteries. In this testing setup, the metal acts as the anode and either n- or p-type polymer electrodes can be used as the cathode. When testing the n-type organic, this metal-polymer battery is charged upon assembly and the n-type material is reduced during discharge, while the metal is oxidized. For p-type organics in a metal-polymer test, the battery is already discharged upon assembly. During initial charging, electrolyte salt cations are reduced and mobilized to the polymeric anode while the organic is oxidized. During discharging, the polymer is reduced while the metal is oxidized to its cation. [3]

Types of active materials

Structures of various conductive polymers. In these polymers, the redox group is embedded into the backbone. ConductivePoly.png
Structures of various conductive polymers. In these polymers, the redox group is embedded into the backbone.

Conductive polymers

Conductive polymers can be n-doped or p-doped to form an electrochemically active material with conductivity due to dopant ions on a conjugated polymer backbone. [9] [2] Conductive polymers (i.e. conjugated polymers) are embedded with the redox active group, as opposed to having pendant groups, with the exception of sulfur conductive polymers. [2] They are ideal electrode materials due to their conductivity and redox activity, therefore not requiring large quantities of inactive conductive fillers. [10] However they also tend to have low coulombic efficiency and exhibit poor cyclability and self-discharge. [7] Due to the poor electronic separation of the polymer's charged centers, the redox potentials of conjugated polymers change upon charge and discharge due to a dependence on the dopant levels. As a result of this complication, the discharge profile (cell voltage vs. capacity) of conductive polymer batteries has a sloped curve. [3]

Conductive polymers struggle with stability due to high levels of charge, failing to reach the ideal of one charge per monomer unit of polymer. Stabilizing additives can be incorporated, but these decrease the specific capacity. [3]

Non-conjugated polymers with pendant groups

Despite the conductivity advantage of conjugated polymers, their many drawbacks as active materials have furthered the exploration of polymers with redox active pendant groups. Groups frequently explored include carbonyls, carbazoles, organosulfur compounds, viologen, and other redox-active molecules with high reactivity and stable voltage upon charge and discharge. [2] These polymers present an advantage over conjugated polymers due to their localized redox sites and more constant redox potential over charge/discharge. [3]

In a polystyrene chain, the phenyl groups are the pendant groups attached to the polymer's backbone chain. Polystyrene formation.PNG
In a polystyrene chain, the phenyl groups are the pendant groups attached to the polymer's backbone chain.

Carbonyl pendant groups

Carbonyl compounds have been heavily studied, and thus present an advantage, as new active materials with carbonyl pendant groups can be achieved by many different synthetic properties. Polymers with carbonyl groups can form multivalent anions. Stabilization depends on the substituents; vicinal carbonyls are stabilized by enolate formation, aromatic carbonyls are stabilized by delocalization of charge, and quinoidal carbonyls are stabilized by aromaticity. [3]

Charge/discharge redox reaction of thioether pendant group. Charge discharge of thioether compounds.png
Charge/discharge redox reaction of thioether pendant group.

Organosulfur groups

Sulfur is one of earth's most abundant elements and thus are advantageous for active electrode materials. Small molecule organosulfur active materials exhibit poor stability, which is partially resolved via incorporation into a polymer. In disulfide polymers, electrochemical charge is stored in a thiolate anion, formed by a reversible two-electron oxidation of the disulfide bond. Electrochemical storage in thioethers is achieved by the two-electron oxidation of a neutral thioether to a thioether with a +2 charge. As active materials, however, organosulfur compounds, however, exhibit weak cyclability. [3]

Radical groups

Charge and discharge of a Li/radical polymer battery, consisting of a Li anode and nitroxide radical group polymer. This is an example of a semi polymer based battery, where only one electrode is polymeric. Chargedischargeorbliion.png
Charge and discharge of a Li/radical polymer battery, consisting of a Li anode and nitroxide radical group polymer. This is an example of a semi polymer based battery, where only one electrode is polymeric.

Polymeric electrodes in organic radical batteries are electrochemically active with stable organic radical pendant groups that have an unpaired electron in the uncharged state. [11] Nitroxide radicals are the most commonly applied, though phenoxyl and hydrazyl groups are also often used. [3] A nitroxide radical could be reversibly oxidized and the polymer p-doped, or reduced, causing n-doping. Upon charging, the radical is oxidized to an oxoammonium cation, and at the cathode, the radical is reduced to an aminoxyl anion. [12] These processes are reversed upon discharge, and the radicals are regenerated. [11] For stable charge and discharge, both the radical and doped form of the radical must be chemically stable. [12] These batteries exhibit excellent cyclability and power density, attributed to the stability of the radical and the simple one-electron transfer reaction. Slight decrease in capacity after repeated cycling is likely due to a build up of swollen polymer particles which increase the resistance of the electrode. Because the radical polymers are considerably insulating, conductive additives are often added that which lower the theoretical specific capacity. Nearly all organic radical batteries feature a nearly constant voltage during discharge, which is an advantage over conductive polymer batteries. [11] The polymer backbone and cross-linking techniques can be tuned to minimize the solubility of the polymer in the electrolyte, thereby minimizing self-discharge. [11]

Control and performance

Performance summary comparison of key polymer electrode types [13]

Polymer typeelectrode material (electrolyte doping species)Initial Reversible Capacity (mAh g−1)Working VoltageCyclability (mAh g−1)
conjugated PANI (CLO4 and Li+)75.73.90-2.075.7 after 80 cycles
PPy (SO42-)52.2
PPP (PF6 and Li+)80 (p-doping)

400 (n-doping)

4.6-3.0

3.0-0.0

70 after 100 cycles

580 after 90 cycles

organosulfidePDMcT42403.8-1.810 after 10 cycles
thioetherPTBDT52404.2-1.4560 after 20 cycles
nitroxyl radicalPTMA (Li+ and PF6)774.0-3.068 after 500 cycles
This graph is a schematic representation of the problematic sloping discharge curve (blue) of a conductive polymer battery, compared to the voltage plateau of a non-conjugated or organic radical polymer batter discharge curve (green). Conductive polymer battery sloping discharge behavior.png
This graph is a schematic representation of the problematic sloping discharge curve (blue) of a conductive polymer battery, compared to the voltage plateau of a non-conjugated or organic radical polymer batter discharge curve (green).

During discharge, conductive polymers have a sloping voltage that hinders their practical applications. This sloping curve indicates electrochemical instability which could be due to morphology, size, the charge repulsions within the polymer chain during the reaction, or the amorphous state of polymers.

Effect of polymer morphology

Electrochemical performance of polymer electrodes is affected by polymer size, morphology, and degree of crystallinity. [14] In a polypyrrole (PPy)/Sodium ion hybrid battery, a 2018 study demonstrated that the polymer anode with a fluffy structure consisting of chains of submicron particles performed with a much higher capacity (183 mAh g−1) as compared to bulk PPy (34.8 mAh g−1). [15] The structure of the submicron polypyrrole anode allowed for increased electrical contact between the particles, and the electrolyte was able to further penetrate the polymeric active material. It has also been reported that amorphous polymeric active materials performs better than the crystalline counterpart. In 2014, it was demonstrated that crystalline oligopyrene exhibited a discharge capacity of 42.5 mAh g−1, while the amorphous oligopyrene has a higher capacity of 120 mAh g−1. Further, the crystalline version experienced a sloped charge and discharge voltage and considerable overpotential due to slow diffusion of ClO4. The amorphous oligopyrene had a voltage plateau during charge and discharge, as well as significantly less overpotential. [16]

Molecular weight control

The molecular weight of polymers effects their chemical and physical properties, and thus the performance of a polymer electrode. A 2017 study evaluated the effect of molecular weight on electrochemical properties of poly(TEMPO methacrylate) (PTMA). [17] By increasing the monomer to initiator ratio from 50/1 to 1000/1, five different sizes were achieved from 66 to 704 degrees of polymerization. A strong dependence on molecular weight was established, as the higher the molecular weight polymers exhibited a higher specific discharge capacity and better cyclability. This effect was attributed to a reciprocal relationship between molecular weight and solubility in the electrolyte. [17]

Advantages

Polymer-based batteries have many advantages over metal-based batteries. The electrochemical reactions involved are more simple, and the structural diversity of polymers and method of polymer synthesis allows for increased tunability for desired applications. [2] [3] While new types of inorganic materials are difficult to find, new organic polymers can be much more easily synthesized. [7] Another advantage is that polymer electrode materials may have lower redox potentials, but they have a higher energy density than inorganic materials. And, because the redox reaction kinetics for organics is higher than that for inorganics, they have a higher power density and rate performance. Because of the inherent flexibility and light weight of organic materials as compared to inorganic materials, polymeric electrodes can be printed, cast, and vapor deposited, enabling application in thinner and more flexible devices. Further, most polymers can be synthesized at low cost or extracted from biomass and even recycled, while inorganic metals are limited in availability and can be harmful to the environment. [7]

Organic small molecules also possess many of these advantages, however they are more susceptible to dissolving in the electrolyte. Polymeric organic active materials less easily dissolve and thus exhibit superior cyclability. [7]

Challenges

Though superior in this sense to small organic molecules, polymers still exhibit solubility in electrolytes, and battery stability is threatened by dissolved active material that can travel between electrodes, leading to decreased cyclability and self-discharge, which indicates weaker mechanical capacity. This issue can be lessened by incorporating the redox-active unit in the polymeric backbone, but this can decrease the theoretical specific capacity and increase electrochemical polarization. [3] [7] Another challenge is that besides conductive polymers, most polymeric electrodes are electrically insulating and therefore require conductive additives, reducing the battery's overall capacity. While polymers do have a low mass density, they have a greater volumetric energy density which in turn would require an increase in volume of devices being powered. [7]

Safety

A 2009 study evaluated the safety of a hydrophilic radical polymer and found that a radical polymer battery with an aqueous electrolyte is nontoxic, chemically stable, and non-explosive, and is thus a safer alternative to traditional metal-based batteries. [3] [18] Aqueous electrolytes present a safer option over organic electrolytes which can be toxic and can form HF acid. The one-electron redox reaction of a radical polymer electrode during charging generates little heat and therefore has a reduced risk of thermal runaway. [3] Further studies are required to fully understand the safety of all polymeric electrodes.

See also

Related Research Articles

<span class="mw-page-title-main">Electrochemistry</span> Branch of chemistry

Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference and identifiable chemical change. These reactions involve electrons moving via an electronically-conducting phase between electrodes separated by an ionically conducting and electronically insulating electrolyte.

<span class="mw-page-title-main">Electrode</span> Electrical conductor used to make contact with nonmetallic parts of a circuit

An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit. Electrodes are essential parts of batteries that can consist of a variety of materials depending on the type of battery.

<span class="mw-page-title-main">Electrochemical cell</span> Electro-chemical device

An electrochemical cell is a device that generates electrical energy from chemical reactions. Electrical energy can also be applied to these cells to cause chemical reactions to occur. Electrochemical cells which generate an electric current are called voltaic or galvanic cells and those that generate chemical reactions, via electrolysis for example, are called electrolytic cells.

<span class="mw-page-title-main">Redox</span> Chemical reaction in which oxidation states of atoms are changed

Redox is a type of chemical reaction in which the oxidation states of a substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a decrease in the oxidation state.

<span class="mw-page-title-main">Lithium-ion battery</span> Rechargeable battery type

A lithium-ion or Li-ion battery is a type of rechargeable battery which uses the reversible intercalation of Li+ ions into electronically conducting solids to store energy. In comparison with other rechargeable batteries, Li-ion batteries are characterized by a higher specific energy, higher energy density, higher energy efficiency, longer cycle life and longer calendar life. Also noteworthy is a dramatic improvement in lithium-ion battery properties after their market introduction in 1991: within the next 30 years their volumetric energy density increased threefold, while their cost dropped tenfold.

<span class="mw-page-title-main">Galvanic cell</span> Electrochemical device

A galvanic cell or voltaic cell, named after the scientists Luigi Galvani and Alessandro Volta, respectively, is an electrochemical cell in which an electric current is generated from spontaneous Oxidation-Reduction reactions. A common apparatus generally consists of two different metals, each immersed in separate beakers containing their respective metal ions in solution that are connected by a salt bridge or separated by a porous membrane.

<span class="mw-page-title-main">Flow battery</span> Type of electrochemical cell

A flow battery, or redox flow battery, is a type of electrochemical cell where chemical energy is provided by two chemical components dissolved in liquids that are pumped through the system on separate sides of a membrane. Ion transfer inside the cell occurs through the membrane while both liquids circulate in their own respective space. Cell voltage is chemically determined by the Nernst equation and ranges, in practical applications, from 1.0 to 2.43 volts. The energy capacity is a function of the electrolyte volume and the power is a function of the surface area of the electrodes.

The electrochemical window (EW) of a substance is the electrode electric potential range between which the substance is neither oxidized nor reduced. The EW is one of the most important characteristics to be identified for solvents and electrolytes used in electrochemical applications. The EW is a term that is commonly used to indicate the potential range and the potential difference. It is calculated by subtracting the reduction potential from the oxidation potential.

Nanoarchitectures for lithium-ion batteries are attempts to employ nanotechnology to improve the design of lithium-ion batteries. Research in lithium-ion batteries focuses on improving energy density, power density, safety, durability and cost.

The lithium–air battery (Li–air) is a metal–air electrochemical cell or battery chemistry that uses oxidation of lithium at the anode and reduction of oxygen at the cathode to induce a current flow.

<span class="mw-page-title-main">Pseudocapacitor</span>

Pseudocapacitors store electrical energy faradaically by electron charge transfer between electrode and electrolyte. This is accomplished through electrosorption, reduction-oxidation reactions, and intercalation processes, termed pseudocapacitance.

<span class="mw-page-title-main">Supercapacitor</span> High-capacity electrochemical capacitor

A supercapacitor (SC), also called an ultracapacitor, is a high-capacity capacitor, with a capacitance value much higher than solid-state capacitors but with lower voltage limits. It bridges the gap between electrolytic capacitors and rechargeable batteries. It typically stores 10 to 100 times more energy per unit volume or mass than electrolytic capacitors, can accept and deliver charge much faster than batteries, and tolerates many more charge and discharge cycles than rechargeable batteries.

Aluminium-ion batteries are a class of rechargeable battery in which aluminium ions serve as charge carriers. Aluminium can exchange three electrons per ion. This means that insertion of one Al3+ is equivalent to three Li+ ions. Thus, since the ionic radii of Al3+ (0.54 Å) and Li+ (0.76 Å) are similar, significantly higher numbers of electrons and Al3+ ions can be accepted by cathodes with little damage. Al has 50 times (23.5 megawatt-hours m-3) the energy density of Li and is even higher than coal.

<span class="mw-page-title-main">Pseudocapacitance</span> Storage of electricity within an electrochemical cell

Pseudocapacitance is the electrochemical storage of electricity in an electrochemical capacitor known as a pseudocapacitor. This faradaic charge transfer originates by a very fast sequence of reversible faradaic redox, electrosorption or intercalation processes on the surface of suitable electrodes. Pseudocapacitance is accompanied by an electron charge-transfer between electrolyte and electrode coming from a de-solvated and adsorbed ion. One electron per charge unit is involved. The adsorbed ion has no chemical reaction with the atoms of the electrode since only a charge-transfer takes place.

Research in lithium-ion batteries has produced many proposed refinements of lithium-ion batteries. Areas of research interest have focused on improving energy density, safety, rate capability, cycle durability, flexibility, and cost.

An organic radical battery (ORB) is a type of battery first developed in 2005. As of 2011, this type of battery was generally not available for the consumer, although their development at that time was considered to be approaching practical use. ORBs are potentially more environmentally friendly than conventional metal-based batteries, because they use organic radical polymers to provide electrical power instead of metals. ORBs are considered to be a high-power alternative to the Li-ion battery. Functional prototypes of the battery have been researched and developed by different research groups and corporations including the Japanese corporation NEC.

Lithium hybrid organic batteries are an energy storage device that combines lithium with an organic polymer. For example, polyaniline vanadium (V) oxide (PAni/V2O5) can be incorporated into the nitroxide-polymer lithium iron phosphate battery, PTMA/LiFePO4. Together, they improve the lithium ion intercalation capacity, cycle life, electrochemical performances, and conductivity of batteries.

Lithium–silicon battery is a name used for a subclass of lithium-ion battery technology that employs a silicon-based anode and lithium ions as the charge carriers. Silicon based materials generally have a much larger specific capacity, for example 3600 mAh/g for pristine silicon, relative to graphite, which is limited to a maximum theoretical capacity of 372 mAh/g for the fully lithiated state LiC6. Silicon's large volume change (approximately 400% based on crystallographic densities) when lithium is inserted is one of the main obstacles along with high reactivity in the charged state to commercializing this type of anode. Commercial battery anodes may have small amounts of silicon, boosting their performance slightly. The amounts are closely held trade secrets, limited as of 2018 to at most 10% of the anode. Lithium-silicon batteries also include cell configurations where Si is in compounds that may at low voltage store lithium by a displacement reaction, including silicon oxycarbide, silicon monoxide or silicon nitride.

The glass battery is a type of solid-state battery. It uses a glass electrolyte and lithium or sodium metal electrodes. The battery was invented by John B. Goodenough, inventor of the lithium cobalt oxide and lithium iron phosphate electrode materials used in the lithium-ion battery (Li-ion), and Maria H. Braga, an associate professor at the University of Porto and a senior research fellow at Cockrell School of Engineering at The University of Texas.

Fluoride-ion batteries are rechargeable battery technology based on the shuttle of fluoride ions as ionic charge carriers.

References

  1. 1 2 "Brown engineers build a better battery with plastic". PhysOrg.com. 13 September 2006. Retrieved 3 November 2011.
  2. 1 2 3 4 5 Kim, Jeonghun; Kim, Jung Ho; Ariga, Katsuhiko (December 2017). "Redox-Active Polymers for Energy Storage Nanoarchitectonics". Joule. 1 (4): 739–768. doi: 10.1016/j.joule.2017.08.018 .
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Kever, Jeannie (2015-04-06). "Researchers discover N-type polymer for fast organic battery". R&D.
  4. Daniel Ruby (February 1982). "Plastic-Metal Batteries: New promise for the electric car". Popular Science . pp. 89–91.
  5. Nishide, Hiroyuki; Takeo Suga (2005). "Organic Radical Battery" (PDF). The Electrochemical Society Interface. Retrieved 3 November 2011.
  6. 1 2 3 Muench, Simon; Wild, Andreas; Friebe, Christian; Häupler, Bernhard; Janoschka, Tobias; Schubert, Ulrich S. (2016-08-24). "Polymer-Based Organic Batteries". Chemical Reviews. 116 (16): 9438–9484. doi:10.1021/acs.chemrev.6b00070. ISSN   0009-2665. PMID   27479607.
  7. 1 2 3 4 5 6 7 Bhosale, Manik E.; Chae, Sudong; Kim, Ji Man; Choi, Jae-Young (2018). "Organic small molecules and polymers as an electrode material for rechargeable lithium ion batteries". Journal of Materials Chemistry A. 6 (41): 19885–19911. doi:10.1039/C8TA04906H. ISSN   2050-7488.
  8. Friebe, Christian; Schubert, Ulrich S. (December 2015). "Development of Active Organic and Polymeric Materials for Batteries and Solar Cells: Introduction to Essential Characterization Techniques". Advanced Energy Materials. 5 (24): 1500858. doi:10.1002/aenm.201500858.
  9. Naegele, D (September 1988). "Electrically conductive polymers as rechargeable battery electrodes". Solid State Ionics. 28–30: 983–989. doi:10.1016/0167-2738(88)90316-5.
  10. Schon, Tyler B.; McAllister, Bryony T.; Li, Peng-Fei; Seferos, Dwight S. (2016). "The rise of organic electrode materials for energy storage". Chemical Society Reviews. 45 (22): 6345–6404. doi: 10.1039/C6CS00173D . ISSN   0306-0012. PMID   27273252.
  11. 1 2 3 4 Janoschka, Tobias; Hager, Martin D.; Schubert, Ulrich S. (2012-12-18). "Powering up the Future: Radical Polymers for Battery Applications". Advanced Materials. 24 (48): 6397–6409. doi:10.1002/adma.201203119. PMID   23238940.
  12. 1 2 Nishide, Hiroyuki; Koshika, Kenichiroh; Oyaizu, Kenichi (2009-10-15). "Environmentally benign batteries based on organic radical polymers". Pure and Applied Chemistry. 81 (11): 1961–1970. doi: 10.1351/PAC-CON-08-12-03 . ISSN   1365-3075.
  13. Xie, Jian; Gu, Peiyang; Zhang, Qichun (2017-09-08). "Nanostructured Conjugated Polymers: Toward High-Performance Organic Electrodes for Rechargeable Batteries". ACS Energy Letters. 2 (9): 1985–1996. doi:10.1021/acsenergylett.7b00494. ISSN   2380-8195.
  14. Zhao, Qinglan; Whittaker, Andrew; Zhao, X. (2018-12-17). "Polymer Electrode Materials for Sodium-ion Batteries". Materials. 11 (12): 2567. Bibcode:2018Mate...11.2567Z. doi: 10.3390/ma11122567 . ISSN   1996-1944. PMC   6315866 . PMID   30562972.
  15. Chen, Xiaoying; Liu, Li; Yan, Zichao; Huang, Zhifeng; Zhou, Qian; Guo, Guoxiong; Wang, Xianyou (2016). "The excellent cycling stability and superior rate capability of polypyrrole as the anode material for rechargeable sodium ion batteries". RSC Advances. 6 (3): 2345–2351. doi:10.1039/C5RA22607D. ISSN   2046-2069.
  16. Han, Su Cheol; Bae, Eun Gyoung; Lim, Heatsal; Pyo, Myoungho (May 2014). "Non-crystalline oligopyrene as a cathode material with a high-voltage plateau for sodium ion batteries". Journal of Power Sources. 254: 73–79. Bibcode:2014JPS...254...73H. doi:10.1016/j.jpowsour.2013.12.104.
  17. 1 2 Zhang, Kai; Hu, Yuxiang; Wang, Lianzhou; Fan, Jiyu; Monteiro, Michael J.; Jia, Zhongfan (2017). "The impact of the molecular weight on the electrochemical properties of poly(TEMPO methacrylate)". Polymer Chemistry. 8 (11): 1815–1823. doi:10.1039/C7PY00151G. ISSN   1759-9954.
  18. Koshika, K.; Kitajima, M.; Oyaizu, K.; Nishide, H. (September 2009). "A rechargeable battery based on hydrophilic radical polymer electrode and its green assessment". Green Chemistry Letters and Reviews. 2 (3): 169–174. doi:10.1080/17518250903251775. ISSN   1751-8253.