In mathematics, potential flow around a circular cylinder is a classical solution for the flow of an inviscid, incompressible fluid around a cylinder that is transverse to the flow. Far from the cylinder, the flow is unidirectional and uniform. The flow has no vorticity and thus the velocity field is irrotational and can be modeled as a potential flow. Unlike a real fluid, this solution indicates a net zero drag on the body, a result known as d'Alembert's paradox.
A cylinder (or disk) of radius R is placed in a two-dimensional, incompressible, inviscid flow. The goal is to find the steady velocity vector V and pressure p in a plane, subject to the condition that far from the cylinder the velocity vector (relative to unit vectors i and j) is: [1]
where U is a constant, and at the boundary of the cylinder
where n̂ is the vector normal to the cylinder surface. The upstream flow is uniform and has no vorticity. The flow is inviscid, incompressible and has constant mass density ρ. The flow therefore remains without vorticity, or is said to be irrotational, with ∇ × V = 0 everywhere. Being irrotational, there must exist a velocity potential φ:
Being incompressible, ∇ · V = 0, so φ must satisfy Laplace's equation:
The solution for φ is obtained most easily in polar coordinates r and θ, related to conventional Cartesian coordinates by x = r cos θ and y = r sin θ. In polar coordinates, Laplace's equation is (see Del in cylindrical and spherical coordinates):
The solution that satisfies the boundary conditions is [2]
The velocity components in polar coordinates are obtained from the components of ∇φ in polar coordinates:
and
Being inviscid and irrotational, Bernoulli's equation allows the solution for the pressure field to be obtained directly from the velocity field:
where the constants U and p∞ appear so that p → p∞ far from the cylinder, where V = U. Using V2 = V2
r + V2
θ,
In the figures, the colorized field referred to as "pressure" is a plot of
On the surface of the cylinder, or r = R, pressure varies from a maximum of 1 (shown in the diagram in red) at the stagnation points at θ = 0 and θ = π to a minimum of −3 (shown in blue) on the sides of the cylinder, at θ = π/2 and θ = 3π/2. Likewise, V varies from V = 0 at the stagnation points to V = 2U on the sides, in the low pressure. [1]
The flow being incompressible, a stream function can be found such that
It follows from this definition, using vector identities,
Therefore, a contour of a constant value of ψ will also be a streamline, a line tangent to V. For the flow past a cylinder, we find:
Laplace's equation is linear, and is one of the most elementary partial differential equations. This simple equation yields the entire solution for both V and p because of the constraint of irrotationality and incompressibility. Having obtained the solution for V and p, the consistency of the pressure gradient with the accelerations can be noted.
The dynamic pressure at both the upstream and the downstream stagnation point has a value of 1/2ρU2. This value is needed to decelerate the free stream flow of speed U to zero speed at both these points. This symmetry arises only because the flow is completely frictionless.
The low pressure on the lateral sides of the cylinder is needed to provide the centripetal acceleration of the flow:
where L is the radius of curvature of the flow. [3] But L ≈ R, and V ≈ U. The integral of the equation for centripetal acceleration over a distance Δr ≈ R will thus yield
The exact solution has, for the lowest pressure,
The low pressure, which must be present to provide the centripetal acceleration, will also increase the flow speed as the fluid travels from higher to lower values of pressure. Thus we find the maximum speed in the flow, V = 2U, in the low pressure on the sides of the cylinder.
A value of V > U is consistent with conservation of the volume of fluid. With the cylinder blocking some of the flow, V must be greater than U somewhere in the plane through the center of the cylinder and transverse to the flow.
The symmetry of this ideal solution has a stagnation point on the rear side of the cylinder, as well as on the front side. The pressure distribution over the front and rear sides are identical, leading to the peculiar property of having zero drag on the cylinder, a property known as d'Alembert's paradox. Unlike an ideal inviscid fluid, a viscous flow past a cylinder, no matter how small the viscosity, will acquire a thin boundary layer adjacent to the surface of the cylinder. Boundary layer separation will occur, and a trailing wake will exist in the flow behind the cylinder. The pressure at each point on the wake side of the cylinder will be lower than on the upstream side, resulting in a drag force in the downstream direction.
The problem of potential compressible flow over circular cylinder was first studied by O. Janzen in 1913 [4] and by Lord Rayleigh in 1916 [5] with small compressibility effects. Here, the small parameter is the square of the Mach number , where c is the speed of sound. Then the solution to first-order approximation in terms of the velocity potential is
where is the radius of the cylinder.
Regular perturbation analysis for a flow around a cylinder with slight perturbation in the configurations can be found in Milton Van Dyke (1975). [6] In the following, ε will represent a small positive parameter and a is the radius of the cylinder. For more detailed analyses and discussions, readers are referred to Milton Van Dyke's 1975 book Perturbation Methods in Fluid Mechanics. [6]
Here the radius of the cylinder is not r = a, but a slightly distorted form r = a(1 − ε sin2θ). Then the solution to first-order approximation is
Here the radius of the cylinder varies with time slightly so r = a(1 + ε f(t)). Then the solution to first-order approximation is
In general, the free-stream velocity U is uniform, in other words ψ = Uy, but here a small vorticity is imposed in the outer flow.
Here a linear shear in the velocity is introduced.
where ε is the small parameter. The governing equation is
Then the solution to first-order approximation is
Here a parabolic shear in the outer velocity is introduced.
Then the solution to the first-order approximation is
where χ is the homogeneous solution to the Laplace equation which restores the boundary conditions.
Let Cps represent the surface pressure coefficient for an impermeable cylinder:
where ps is the surface pressure of the impermeable cylinder. Now let Cpi be the internal pressure coefficient inside the cylinder, then a slight normal velocity due to the slight porousness is given by
but the zero net flux condition
requires that Cpi = −1. Therefore,
Then the solution to the first-order approximation is
If the cylinder has variable radius in the axial direction, the z-axis, r = a(1 + ε sin z/b), then the solution to the first-order approximation in terms of the three-dimensional velocity potential is
where K1(r/b) is the modified Bessel function of the first kind of order one.
A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral hydrogen atom contains a single positively charged proton in the nucleus, and a single negatively charged electron bound to the nucleus by the Coulomb force. Atomic hydrogen constitutes about 75% of the baryonic mass of the universe.
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as or where is the Laplace operator, is the divergence operator, is the gradient operator, and is a twice-differentiable real-valued function. The Laplace operator therefore maps a scalar function to another scalar function.
The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).
In fluid dynamics, Stokes' law gives the frictional force – also called drag force – exerted on spherical objects moving at very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.
In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.
In physics, spherical multipole moments are the coefficients in a series expansion of a potential that varies inversely with the distance R to a source, i.e., as Examples of such potentials are the electric potential, the magnetic potential and the gravitational potential.
There are several equivalent ways for defining trigonometric functions, and the proofs of the trigonometric identities between them depend on the chosen definition. The oldest and most elementary definitions are based on the geometry of right triangles and the ratio between their sides. The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles, see Trigonometric functions.
In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.
In mathematical physics, the Hunter–Saxton equation
In fluid dynamics, the Stokes stream function is used to describe the streamlines and flow velocity in a three-dimensional incompressible flow with axisymmetry. A surface with a constant value of the Stokes stream function encloses a streamtube, everywhere tangential to the flow velocity vectors. Further, the volume flux within this streamtube is constant, and all the streamlines of the flow are located on this surface. The velocity field associated with the Stokes stream function is solenoidal—it has zero divergence. This stream function is named in honor of George Gabriel Stokes.
In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to
In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.
The kicked rotator, also spelled as kicked rotor, is a paradigmatic model for both Hamiltonian chaos and quantum chaos. It describes a free rotating stick in an inhomogeneous "gravitation like" field that is periodically switched on in short pulses. The model is described by the Hamiltonian
In general relativity, the Vaidya metric describes the non-empty external spacetime of a spherically symmetric and nonrotating star which is either emitting or absorbing null dusts. It is named after the Indian physicist Prahalad Chunnilal Vaidya and constitutes the simplest non-static generalization of the non-radiative Schwarzschild solution to Einstein's field equation, and therefore is also called the "radiating(shining) Schwarzschild metric".
The Bowring series of the transverse mercator published in 1989 by Bernard Russel Bowring gave formulas for the Transverse Mercator that are simpler to program but retain millimeter accuracy.
In physics and engineering, the radiative heat transfer from one surface to another is the equal to the difference of incoming and outgoing radiation from the first surface. In general, the heat transfer between surfaces is governed by temperature, surface emissivity properties and the geometry of the surfaces. The relation for heat transfer can be written as an integral equation with boundary conditions based upon surface conditions. Kernel functions can be useful in approximating and solving this integral equation.
In the field of fluid dynamics, a Rankine half body is a feature of fluid flow discovered by Scottish physicist and engineer William Rankine that is formed when a fluid source is added to a fluid undergoing potential flow. Superposition of uniform flow and source flow yields the Rankine half body flow. A practical example of this type of flow is a bridge pier or a strut placed in a uniform stream. The resulting stream function and velocity potential are obtained by simply adding the stream function and velocity potential for each individual flow.
In fluid dynamics, Taylor scraping flow is a type of two-dimensional corner flow occurring when one of the wall is sliding over the other with constant velocity, named after G. I. Taylor.
In the larger context of the Navier-Stokes equations, elementary flows are basic flows that can be combined, using various techniques, to construct more complex flows. In this article the term "flow" is used interchangeably with the term "solution" due to historical reasons.