Predicate functor logic

Last updated

In mathematical logic, predicate functor logic (PFL) is one of several ways to express first-order logic (also known as predicate logic) by purely algebraic means, i.e., without quantified variables. PFL employs a small number of algebraic devices called predicate functors (or predicate modifiers) [1] that operate on terms to yield terms. PFL is mostly the invention of the logician and philosopher Willard Quine.

Contents

Motivation

The source for this section, as well as for much of this entry, is Quine (1976). Quine proposed PFL as a way of algebraizing first-order logic in a manner analogous to how Boolean algebra algebraizes propositional logic. He designed PFL to have exactly the expressive power of first-order logic with identity. Hence the metamathematics of PFL are exactly those of first-order logic with no interpreted predicate letters: both logics are sound, complete, and undecidable. Most work Quine published on logic and mathematics in the last 30 years of his life touched on PFL in some way.[ citation needed ]

Quine took "functor" from the writings of his friend Rudolf Carnap, the first to employ it in philosophy and mathematical logic, and defined it as follows:

"The word functor, grammatical in import but logical in habitat... is a sign that attaches to one or more expressions of given grammatical kind(s) to produce an expression of a given grammatical kind." (Quine 1982: 129)

Ways other than PFL to algebraize first-order logic include:

PFL is arguably the simplest of these formalisms, yet also the one about which the least has been written.

Quine had a lifelong fascination with combinatory logic, attested to by his introduction to the translation in Van Heijenoort (1967) of the paper by the Russian logician Moses Schönfinkel founding combinatory logic. When Quine began working on PFL in earnest, in 1959, combinatory logic was commonly deemed a failure for the following reasons:

Kuhn's formalization

The PFL syntax, primitives, and axioms described in this section are largely Steven Kuhn's (1983). The semantics of the functors are Quine's (1982). The rest of this entry incorporates some terminology from Bacon (1985).

Syntax

An atomic term is an upper case Latin letter, I and S excepted, followed by a numerical superscript called its degree, or by concatenated lower case variables, collectively known as an argument list. The degree of a term conveys the same information as the number of variables following a predicate letter. An atomic term of degree 0 denotes a Boolean variable or a truth value. The degree of I is invariably 2 and so is not indicated.

The "combinatory" (the word is Quine's) predicate functors, all monadic and peculiar to PFL, are Inv, inv, , +, and p. A term is either an atomic term, or constructed by the following recursive rule. If τ is a term, then Invτ, invτ, τ, +τ, and pτ are terms. A functor with a superscript n, n a natural number > 1, denotes n consecutive applications (iterations) of that functor.

A formula is either a term or defined by the recursive rule: if α and β are formulas, then αβ and ~(α) are likewise formulas. Hence "~" is another monadic functor, and concatenation is the sole dyadic predicate functor. Quine called these functors "alethic." The natural interpretation of "~" is negation; that of concatenation is any connective that, when combined with negation, forms a functionally complete set of connectives. Quine's preferred functionally complete set was conjunction and negation. Thus concatenated terms are taken as conjoined. The notation + is Bacon's (1985); all other notation is Quine's (1976; 1982). The alethic part of PFL is identical to the Boolean term schemata of Quine (1982).

As is well known, the two alethic functors could be replaced by a single dyadic functor with the following syntax and semantics: if α and β are formulas, then (αβ) is a formula whose semantics are "not (α and/or β)" (see NAND and NOR).

Axioms and semantics

Quine set out neither axiomatization nor proof procedure for PFL. The following axiomatization of PFL, one of two proposed in Kuhn (1983), is concise and easy to describe, but makes extensive use of free variables and so does not do full justice to the spirit of PFL. Kuhn gives another axiomatization dispensing with free variables, but that is harder to describe and that makes extensive use of defined functors. Kuhn proved both of his PFL axiomatizations sound and complete.

This section is built around the primitive predicate functors and a few defined ones. The alethic functors can be axiomatized by any set of axioms for sentential logic whose primitives are negation and one of ∧ or ∨. Equivalently, all tautologies of sentential logic can be taken as axioms.

Quine's (1982) semantics for each predicate functor are stated below in terms of abstraction (set builder notation), followed by either the relevant axiom from Kuhn (1983), or a definition from Quine (1976). The notation denotes the set of n-tuples satisfying the atomic formula

Identity is reflexive (Ixx), symmetric (IxyIyx), transitive ((IxyIyz) → Ixz), and obeys the substitution property:

Cropping enables two useful defined functors:

S generalizes the notion of reflexivity to all terms of any finite degree greater than 2. N.B: S should not be confused with the primitive combinator S of combinatory logic.

Here only, Quine adopted an infix notation, because this infix notation for Cartesian product is very well established in mathematics. Cartesian product allows restating conjunction as follows:

Reorder the concatenated argument list so as to shift a pair of duplicate variables to the far left, then invoke S to eliminate the duplication. Repeating this as many times as required results in an argument list of length max(m,n).

The next three functors enable reordering argument lists at will.

Given an argument list consisting of n variables, p implicitly treats the last n−1 variables like a bicycle chain, with each variable constituting a link in the chain. One application of p advances the chain by one link. k consecutive applications of p to Fn moves the k+1 variable to the second argument position in F.

When n=2, Inv and inv merely interchange x1 and x2. When n=1, they have no effect. Hence p has no effect when n < 3.

Kuhn (1983) takes Major inversion and Minor inversion as primitive. The notation p in Kuhn corresponds to inv; he has no analog to Permutation and hence has no axioms for it. If, following Quine (1976), p is taken as primitive, Inv and inv can be defined as nontrivial combinations of +, , and iterated p.

The following table summarizes how the functors affect the degrees of their arguments.

ExpressionDegree
no change
n
max(m, n)

Rules

All instances of a predicate letter may be replaced by another predicate letter of the same degree, without affecting validity. The rules are:

Some useful results

Instead of axiomatizing PFL, Quine (1976) proposed the following conjectures as candidate axioms.

n1 consecutive iterations of p restores the status quo ante:

+ and annihilate each other:

Negation distributes over +, , and p:

+ and p distributes over conjunction:

Identity has the interesting implication:

Quine also conjectured the rule: If α is a PFL theorem, then so are pα, +α, and .

Bacon's work

Bacon (1985) takes the conditional, negation, Identity, Padding, and Major and Minor inversion as primitive, and Cropping as defined. Employing terminology and notation differing somewhat from the above, Bacon (1985) sets out two formulations of PFL:

Bacon also:

From first-order logic to PFL

The following algorithm is adapted from Quine (1976: 300–2). Given a closed formula of first-order logic, first do the following:

Now apply the following algorithm to the preceding result:

  1. Translate the matrices of the most deeply nested quantifiers into disjunctive normal form, consisting of disjuncts of conjuncts of terms, negating atomic terms as required. The resulting subformula contains only negation, conjunction, disjunction, and existential quantification.
  2. Distribute the existential quantifiers over the disjuncts in the matrix using the rule of passage (Quine 1982: 119):
  3. Replace conjunction by Cartesian product, by invoking the fact:
  4. Concatenate the argument lists of all atomic terms, and move the concatenated list to the far right of the subformula.
  5. Use Inv and inv to move all instances of the quantified variable (call it y) to the left of the argument list.
  6. Invoke S as many times as required to eliminate all but the last instance of y. Eliminate y by prefixing the subformula with one instance of .
  7. Repeat (1)-(6) until all quantified variables have been eliminated. Eliminate any disjunctions falling within the scope of a quantifier by invoking the equivalence:

The reverse translation, from PFL to first-order logic, is discussed in Quine (1976: 302–4).

The canonical foundation of mathematics is axiomatic set theory, with a background logic consisting of first-order logic with identity, with a universe of discourse consisting entirely of sets. There is a single predicate letter of degree 2, interpreted as set membership. The PFL translation of the canonical axiomatic set theory ZFC is not difficult, as no ZFC axiom requires more than 6 quantified variables. [2]

See also

Footnotes

  1. Johannes Stern, Toward Predicate Approaches to Modality, Springer, 2015, p. 11.
  2. Metamath axioms.

Related Research Articles

In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is countable if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements.

First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.

In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of literals; otherwise put, it is a product of sums or an AND of ORs. As a canonical normal form, it is useful in automated theorem proving and circuit theory.

In mathematics, an algebraic structure consists of a nonempty set A, a collection of operations on A, and a finite set of identities, known as axioms, that these operations must satisfy.

Combinatory logic is a notation to eliminate the need for quantified variables in mathematical logic. It was introduced by Moses Schönfinkel and Haskell Curry, and has more recently been used in computer science as a theoretical model of computation and also as a basis for the design of functional programming languages. It is based on combinators, which were introduced by Schönfinkel in 1920 with the idea of providing an analogous way to build up functions—and to remove any mention of variables—particularly in predicate logic. A combinator is a higher-order function that uses only function application and earlier defined combinators to define a result from its arguments.

Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic.

In logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory.

In propositional logic, a propositional formula is a type of syntactic formula which is well formed and has a truth value. If the values of all variables in a propositional formula are given, it determines a unique truth value. A propositional formula may also be called a propositional expression, a sentence, or a sentential formula.

In formal ontology, a branch of metaphysics, and in ontological computer science, mereotopology is a first-order theory, embodying mereological and topological concepts, of the relations among wholes, parts, parts of parts, and the boundaries between parts.

In mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism. It is named after Arend Heyting, who first proposed it.

In the foundations of mathematics, Morse–Kelley set theory (MK), Kelley–Morse set theory (KM), Morse–Tarski set theory (MT), Quine–Morse set theory (QM) or the system of Quine and Morse is a first-order axiomatic set theory that is closely related to von Neumann–Bernays–Gödel set theory (NBG). While von Neumann–Bernays–Gödel set theory restricts the bound variables in the schematic formula appearing in the axiom schema of Class Comprehension to range over sets alone, Morse–Kelley set theory allows these bound variables to range over proper classes as well as sets, as first suggested by Quine in 1940 for his system ML.

In mathematical logic and automated theorem proving, resolution is a rule of inference leading to a refutation-complete theorem-proving technique for sentences in propositional logic and first-order logic. For propositional logic, systematically applying the resolution rule acts as a decision procedure for formula unsatisfiability, solving the Boolean satisfiability problem. For first-order logic, resolution can be used as the basis for a semi-algorithm for the unsatisfiability problem of first-order logic, providing a more practical method than one following from Gödel's completeness theorem.

In mathematical logic, second-order arithmetic is a collection of axiomatic systems that formalize the natural numbers and their subsets. It is an alternative to axiomatic set theory as a foundation for much, but not all, of mathematics.

In mathematics, the notion of cylindric algebra, invented by Alfred Tarski, arises naturally in the algebraization of first-order logic with equality. This is comparable to the role Boolean algebras play for propositional logic. Cylindric algebras are Boolean algebras equipped with additional cylindrification operations that model quantification and equality. They differ from polyadic algebras in that the latter do not model equality.

In logic, especially mathematical logic, a Hilbert system, sometimes called Hilbert calculus, Hilbert-style deductive system or Hilbert–Ackermann system, is a type of system of formal deduction attributed to Gottlob Frege and David Hilbert. These deductive systems are most often studied for first-order logic, but are of interest for other logics as well.

In mathematics and philosophy, Łukasiewicz logic is a non-classical, many-valued logic. It was originally defined in the early 20th century by Jan Łukasiewicz as a three-valued modal logic; it was later generalized to n-valued as well as infinitely-many-valued (0-valued) variants, both propositional and first order. The ℵ0-valued version was published in 1930 by Łukasiewicz and Alfred Tarski; consequently it is sometimes called the Łukasiewicz–Tarski logic. It belongs to the classes of t-norm fuzzy logics and substructural logics.

In mathematical logic, the rules of passage govern how quantifiers distribute over the basic logical connectives of first-order logic. The rules of passage govern the "passage" (translation) from any formula of first-order logic to the equivalent formula in prenex normal form, and vice versa.

Czesław Lejewski was a Polish philosopher and logician, and a member of the Lwow-Warsaw School of Logic. He studied under Jan Łukasiewicz and Karl Popper in the London School of Economics, and W. V. O. Quine.

References