Pressure reference system

Last updated

Pressure reference system (PRS) is an enhancement of the inertial reference system and attitude and heading reference system designed to provide position angles measurements which are stable in time and do not suffer from long term drift caused by the sensor imperfections. [1] The measurement system uses behavior of the International Standard Atmosphere where atmospheric pressure descends with increasing altitude and two pairs of measurement units. Each pair measures pressure at two different positions that are mechanically connected with known distance between units, e.g. the units are mounted at the tips of the wing. In horizontal flight, there is no pressure difference measured by the measurement system which means the position angle is zero. In case the airplane banks (to turn), the tips of the wings mutually change their positions, one is going up and the second one is going down, and the pressure sensors in every unit measure different values which are translated into a position angle.

Contents

Pressure Reference System entry points Pressure Reference System principle.png
Pressure Reference System entry points

Overview

The strapdown inertial navigation system uses double integration of the accelerations measured by an inertial measurement unit (IMU). [2] This process sums the sensors outputs together with all the sensor and measurement errors. The precision and long-term stability of the INS system depends on the quality of sensors used within the IMU. The sensor quality can be evaluated by Allan Variance technique. A precise IMU uses laser gyroscopes and precise accelerometers which are expensive. The INS is a sole system with no other inputs. Nowadays the trend of the modern navigation is to integrate [3] signals from IMU together with data provided by Global Positioning System (GPS). This approach gives long term stability to the INS output by suppressing sensor error influence on the calculation of the airplane position. The measurement system becomes attitude and heading reference system which can relax requirement on the sensor precision because the long-term stability is assured by GPS. The sensors used within AHRS are used only for position angles determination and so just one numerical integration of the angular rate measurements is required. The AHRS system is cheaper and a lot of universities and companies are developing AHRS systems based on microelectromechanical systems (MEMS) sensors. The MEMS sensors do not have performance required for navigation purposes. It is shown in an experimental research report, [4] where the output of the navigation solution drifts away after 2 seconds. The AHRS units based on MEMS inertial sensors usually also use a vector magnetometer, a GPS receiver, and a data fusion algorithm to cope with MEMS inertial sensors errors. Next to the sensor imperfections there are also environmental parameters which influence the computed values (position angles):

All these influences cause drifts in the computed output data which can confuse pilot who performs the flight.

Pressure reference system

The concept of the PRS was defined by Pavel Paces in his PhD thesis [6] where results measured under laboratory conditions were also published. Three arrangements of the PRS were evaluated:

While the first method gives only ambiguous results the second method works well as it can be replaced by two altimeters. Disadvantage of the second method is high measurement uncertainty of both values. This is being solved by the extension of the reference volumes used even in absolute pressure sensors. [8]

Related Research Articles

Boeing OC-135B Open Skies US Air Force observation aircraft

The OC-135B Open Skies United States Air Force observation aircraft supports the Treaty on Open Skies. The aircraft, a modified WC-135B, flies unarmed observation flights over participating parties of the treaty. Three OC-135B aircraft were modified by the Aeronautical Systems Center's 4950th Test Wing at Wright-Patterson Air Force Base in Ohio. The first operationally-capable OC-135B was assigned to the 24th Reconnaissance Squadron at Offutt AFB in October 1993. It is now fitted with a basic set of navigational and sensor equipment, and was placed in inviolate storage at the Aerospace Maintenance and Regeneration Center at Davis-Monthan Air Force Base near Tucson, Arizona in 1997. Two fully operational OC-135B aircraft were delivered in 1996 with the full complement of treaty-allowed sensors, which includes an infrared line scanner, synthetic aperture radar and video scanning sensors.

Attitude indicator instrument for determining the pitch and roll of an aircraft

The attitude indicator (AI), formerly known as the gyro horizon or artificial horizon, is a flight instrument that informs the pilot of the aircraft orientation relative to Earth's horizon, and gives an immediate indication of the smallest orientation change. The miniature aircraft and horizon bar mimic the relationship of the aircraft relative to the actual horizon. It is a primary instrument for flight in instrument meteorological conditions.

A guidance system is a virtual or physical device, or a group of devices implementing a guidance process used for controlling the movement of a ship, aircraft, missile, rocket, satellite, or any other moving object. Guidance is the process of calculating the changes in position, velocity, attitude, and/or rotation rates of a moving object required to follow a certain trajectory and/or attitude profile based on information about the object's state of motion.

A vibrating structure gyroscope, defined by the IEEE as a Coriolis vibratory gyroscope (CVG), is a gyroscope that uses a vibrating structure to determine the rate of rotation. A vibrating structure gyroscope functions much like the halteres of flies.

Aerial survey collection of geomatics or surface imagery from aircraft or other aerial platforms

Aerial survey is a method of collecting geomatics or other imagery by using airplanes, helicopters, UAVs, balloons or other aerial methods. Typical types of data collected include aerial photography, Lidar, remote sensing and also geophysical data (such as aeromagnetic surveys and gravity. It can also refer to the chart or map made by analysing a region from the air. Aerial survey should be distinguished from satellite imagery technologies because of its better resolution, quality and atmospheric conditions. Today, aerial survey is sometimes recognized as a synonym for aerophotogrammetry, part of photogrammetry where the camera is placed in the air. Measurements on aerial images are provided by photogrammetric technologies and methods.

An attitude and heading reference system (AHRS) consists of sensors on three axes that provide attitude information for aircraft, including roll, pitch and yaw. These are sometimes referred to as MARG sensors and consist of either solid-state or microelectromechanical systems (MEMS) gyroscopes, accelerometers and magnetometers. They are designed to replace traditional mechanical gyroscopic flight instruments.

Crossbow Technology California-based electronics company

Crossbow Technology, Inc. was a California-based company with two distinct product lines. One was based on sensors and fibre optic gyroscope inertial sensor systems. This included inertial measurement units, attitude and heading reference systems, digital inclinometers and guidance, navigation and control units. The other was based on GPS and radios using cellular phone technology with multiple environmental sensors that included asset tracking products.

Inertial reference unit Avionics sensor

An inertial reference unit (IRU) is a type of inertial sensor which uses gyroscopes and accelerometers to determine a moving aircraft’s or spacecraft’s change in rotational attitude and translational position over a period of time. In other words, an IRU allows a device, whether airborne or submarine, to travel from one point to another without reference to external information. They mainly have application in guided missiles.

Space Integrated GPS/INS (SIGI) is a strapdown Inertial Navigation Unit (INU) developed and built by Honeywell International to control and stabilize spacecrafts during flight.

GPS/INS is the use of GPS satellite signals to correct or calibrate a solution from an inertial navigation system (INS). The method is applicable for any GNSS/INS system.

An indoor positioning system (IPS) is a network of devices used to locate people or objects where GPS and other satellite technologies lack precision or fail entirely, such as inside multistory buildings, airports, alleys, parking garages, and underground locations. A large variety of techniques and devices are used to provide indoor positioning ranging from reconfigured devices already deployed such as smartphones, WiFi and Bluetooth antennas, digital cameras, and clocks; to purpose built installations with relays and beacons strategically placed throughout a defined space. IPS has broad applications in commercial, military, retail, and inventory tracking industries. There are several commercial systems on the market, but no standards for an IPS system. Instead each installation is tailored to spatial dimensions, building materials, accuracy needs, and budget constraints. Lights, radio waves, magnetic fields, acoustic signals, and behavioral analytics are all used in IPS networks. IPS can achieve position accuracy of 2cm, which is on par with RTK enabled GNSS receivers that can achieve 2cm accuracy outdoors.

GPS navigation software usually falls into one of the following two categories:

  1. Navigation with route calculation and directions from the software to the user of the route to take, based on a vector-based map, normally for motorised vehicles with some motorised forms added on as an afterthought.
  2. Navigation tracking, often with a map "picture" in the background, but showing where you have been, and allowing "routes" to be preprogrammed, giving a line you can follow on the screen. This type can also be used for geocaching.

The Tamam Division of the Systems Missiles and Space Group of the Israel Aerospace Industries (IAI) is a manufacturing plant in the development and production of high performance Inertial and Electro-Optic (EO) products and systems and maritime drones.

SensorDynamics was a European semiconductor and MEMS company specialized in developing and manufacturing high-volume micro- and wireless semiconductor sensor products for applications in automotive, industry and high-end consumer sectors. The company was acquired by Maxim Integrated in 2011 for $164 million. SensorDynamics developed and produced custom-made designs and standard components for use in vehicle stabilization, occupant protection, navigation systems, keyless go systems and autonomous energy generators for wireless and battery free controllers for industrial, automotive and high-end consumer application. With its headquarters in Graz, Austria, SensorDynamics had offices in Italy and Germany and a worldwide sales and distribution network. The company employed about 130 people in 2011.

Inertial navigation system navigation aid relying on systems contained within the vehicle to determine location

An inertial navigation system (INS) is a navigation device that uses a computer, motion sensors (accelerometers) and rotation sensors (gyroscopes) to continuously calculate by dead reckoning the position, the orientation, and the velocity of a moving object without the need for external references. Often the inertial sensors are supplemented by a barometric altimeter and occasionally by magnetic sensors (magnetometers) and/or speed measuring devices. INSs are used on mobile robots and on vehicles such as ships, aircraft, submarines, guided missiles, and spacecraft. Other terms used to refer to inertial navigation systems or closely related devices include inertial guidance system, inertial instrument, inertial measurement unit (IMU) and many other variations. Older INS systems generally used an inertial platform as their mounting point to the vehicle and the terms are sometimes considered synonymous.

Xsens

Xsens Technologies B.V. is a supplier of 3D motion capture products based upon miniature MEMS inertial sensor technology. The company has created intellectual property in the field of multi-sensor data fusion algorithms, combining inertial sensors with aiding technologies such as GPS, Motion capture and biomechanical modeling. Xsens is part of Mcube the provider of the world’s smallest and lowest power MEMS motion sensors, key enablers for the Internet of Moving Things.

Jugnu, is an Indian technology demonstration and remote sensing CubeSat satellite which was operated by the Indian Institute of Technology Kanpur. Built under the guidance of Dr. N. S. Vyas, it is a nanosatellite which will be used to provide data for agriculture and disaster monitoring. It is a 3-kilogram (6.6 lb) spacecraft, which measures 34 centimetres (13 in) in length by 10 centimetres (3.9 in) in height and width. Its development programme cost around 25 million rupee. It has a design life of one year.

Inertial measurement unit electronic device to measure a crafts velocity and orientation

An inertial measurement unit (IMU) is an electronic device that measures and reports a body's specific force, angular rate, and sometimes the orientation of the body, using a combination of accelerometers, gyroscopes, and sometimes magnetometers. IMUs are typically used to maneuver aircraft, including unmanned aerial vehicles (UAVs), among many others, and spacecraft, including satellites and landers. Recent developments allow for the production of IMU-enabled GPS devices. An IMU allows a GPS receiver to work when GPS-signals are unavailable, such as in tunnels, inside buildings, or when electronic interference is present. A wireless IMU is known as a WIMU.

The terminology quantum compass often relates to an instrument which measures relative position using the technique of atom interferometry. It includes an ensemble of accelerometers and gyroscope based on quantum technology to form an Inertial Navigation Unit.

Positional tracking

Positional tracking detects the precise position of the head-mounted displays, controllers, other objects or body parts within Euclidean space. Positional tracking registers the exact position due to recognition of the rotation and recording of the translational movements. Since virtual reality is about emulating and altering reality it’s important that we can track accurately how objects move in real life in order to represent them inside VR. Defining the position and orientation of a real object in space is determined with the help of special sensors or markers. Sensors record the signal from the real object when it moves or is moved and transmit the received information to the computer.

References

  1. King, A. D. (1998). "Inertial Navigation – Forty Years of Evolution" (PDF). GEC Review (General Electric Company PLC). 13 (3): 140–149. Retrieved 2013-03-03.
  2. Stovall, Sherryl H. (September 1997). "Basic Inertial Navigation" (PDF). Naval Air Warfare Center Weapons Division. Retrieved 31 December 2012.
  3. Weed, D.; Broderick, J.; Love, J.; Ryno, T. (2004). GPS Align In Motion of civilian strapdown INS. Position Location and Navigation Symposium. 26–29 April 2004. pp. 184–192. doi:10.1109/PLANS.2004.1308992.
  4. (Crittenden, Jordan; Evans, Parker (2008-05-08). "MEMS Inertial Navigation System" (PDF). Retrieved 2012-12-31.)
  5. "MGL Avionics. SP-2 Magnetometer. SP-4 AHRS. User and Installation Manual" (PDF). MGL Avionics. Retrieved 31 December 2012.
  6. Paces, Pavel. "Improvement of the Flight Safety of UltraLight Category of Airplanes by the Avionics System Support" (PDF) (in Czech). Czech Technical University in Prague. Retrieved 31 December 2012.
  7. Paces, Pavel; Popelka, Jan; Levora, Tomas (2012). "Advanced Display And Position Angles Measurement Systems" (PDF). 28th International Congress of the Aeronautical Sciences.
  8. 1 2 Paces, Pavel; Popelka, Jan (2012). IMU aiding using two AHRS units. Digital Avionics Systems Conference (DASC), 2012 IEEE/AIAA 31st. 14–18 October 2012. pp. 5B1–1–5B1–13. doi:10.1109/DASC.2012.6382359.