Microelectromechanical systems

Last updated

Proposal submitted to DARPA in 1986 first introducing the term "microelectromechanical systems" MEMsfounding.jpg
Proposal submitted to DARPA in 1986 first introducing the term "microelectromechanical systems"
MEMS microcantilever resonating inside a scanning electron microscope MEMS Microcantilever in Resonance.png
MEMS microcantilever resonating inside a scanning electron microscope

Microelectromechanical systems (MEMS, also written as micro-electro-mechanical, MicroElectroMechanical or microelectronic and microelectromechanical systems and the related micromechatronics) is the technology of microscopic devices, particularly those with moving parts. It merges at the nano-scale into nanoelectromechanical systems (NEMS) and nanotechnology. MEMS are also referred to as micromachines in Japan, or micro systems technology (MST) in Europe.

Nanoelectromechanical systems devices integrating electrical and mechanical functionality on the nanoscale

Nanoelectromechanical systems (NEMS) are a class of devices integrating electrical and mechanical functionality on the nanoscale. NEMS form the logical next miniaturization step from so-called microelectromechanical systems, or MEMS devices. NEMS typically integrate transistor-like nanoelectronics with mechanical actuators, pumps, or motors, and may thereby form physical, biological, and chemical sensors. The name derives from typical device dimensions in the nanometer range, leading to low mass, high mechanical resonance frequencies, potentially large quantum mechanical effects such as zero point motion, and a high surface-to-volume ratio useful for surface-based sensing mechanisms. Uses include accelerometers, or detectors of chemical substances in the air.

Nanotechnology ("nanotech") is manipulation of matter on an atomic, molecular, and supramolecular scale. The earliest, widespread description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology. A more generalized description of nanotechnology was subsequently established by the National Nanotechnology Initiative, which defines nanotechnology as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers. This definition reflects the fact that quantum mechanical effects are important at this quantum-realm scale, and so the definition shifted from a particular technological goal to a research category inclusive of all types of research and technologies that deal with the special properties of matter which occur below the given size threshold. It is therefore common to see the plural form "nanotechnologies" as well as "nanoscale technologies" to refer to the broad range of research and applications whose common trait is size. Because of the variety of potential applications, governments have invested billions of dollars in nanotechnology research. Through 2012, the USA has invested $3.7 billion using its National Nanotechnology Initiative, the European Union has invested $1.2 billion, and Japan has invested $750 million.

Micromachinery mechanical objects that are fabricated in the same general manner as integrated circuits

Micromachines are mechanical objects that are fabricated in the same general manner as integrated circuits. They are generally considered to be between 100 nanometres to 100 micrometres in size, though that is debatable. The applications of micromachines include accelerometers that detect when a car has hit an object and trigger an airbag. Complex systems of gears and levers are another application.

Contents

MEMS are made up of components between 1 and 100 micrometers in size (i.e., 0.001 to 0.1 mm), and MEMS devices generally range in size from 20 micrometres to a millimetre (i.e., 0.02 to 1.0 mm), although components arranged in arrays (e.g., digital micromirror devices) can be more than 1000 mm2. [1] They usually consist of a central unit that processes data (the microprocessor) and several components that interact with the surroundings such as microsensors. [2] Because of the large surface area to volume ratio of MEMS, forces produced by ambient electromagnetism (e.g., electrostatic charges and magnetic moments), and fluid dynamics (e.g., surface tension and viscosity) are more important design considerations than with larger scale mechanical devices. MEMS technology is distinguished from molecular nanotechnology or molecular electronics in that the latter must also consider surface chemistry.

Digital micromirror device

The digital micromirror device, or DMD, is the micro-opto-electromechanical system (MOEMS) that is the core of the trademarked DLP projection technology from Texas Instruments (TI). The DMD was invented by solid state physicist and TI Fellow Emeritus Dr. Larry Hornbeck in 1987.

Electromagnetism branch of science concerned with the phenomena of electricity and magnetism

Electromagnetism is a branch of physics involving the study of the electromagnetic force, a type of physical interaction that occurs between electrically charged particles. The electromagnetic force usually exhibits electromagnetic fields such as electric fields, magnetic fields, and light, and is one of the four fundamental interactions in nature. The other three fundamental interactions are the strong interaction, the weak interaction, and gravitation. At high energy the weak force and electromagnetic force are unified as a single electroweak force.

Magnetic moment extensive physical property

The magnetic moment is a quantity that represents the magnetic strength and orientation of a magnet or other object that produces a magnetic field. Examples of objects that have magnetic moments include: loops of electric current, permanent magnets, elementary particles, various molecules, and many astronomical objects.

The potential of very small machines was appreciated before the technology existed that could make them (see, for example, Richard Feynman's famous 1959 lecture There's Plenty of Room at the Bottom). MEMS became practical once they could be fabricated using modified semiconductor device fabrication technologies, normally used to make electronics. [3] These include molding and plating, wet etching (KOH, TMAH) and dry etching (RIE and DRIE), electro discharge machining (EDM), and other technologies capable of manufacturing small devices. An early example of a MEMS device is the resonistor, an electromechanical monolithic resonator patented by Raymond J. Wilfinger, [4] [5] and the resonant gate transistor developed by Harvey C. Nathanson. [6]

Richard Feynman American theoretical physicist

Richard Phillips Feynman was an American theoretical physicist, known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, and the physics of the superfluidity of supercooled liquid helium, as well as in particle physics for which he proposed the parton model. For his contributions to the development of quantum electrodynamics, Feynman, jointly with Julian Schwinger and Shin'ichirō Tomonaga, received the Nobel Prize in Physics in 1965.

"There's Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics" was a lecture given by physicist Richard Feynman at the annual American Physical Society meeting at Caltech on December 29, 1959. Feynman considered the possibility of direct manipulation of individual atoms as a more powerful form of synthetic chemistry than those used at the time. Although versions of the talk were reprinted in a few popular magazines it went largely unnoticed and did not inspire the conceptual beginnings of the field. Beginning in the 1980s, however, nanotechnology advocates cited it to establish the scientific credibility of their work.

Semiconductor device fabrication process used to create the integrated circuits that are present in everyday electrical and electronic devices

Semiconductor device fabrication is the process used to create the integrated circuits that are present in everyday electrical and electronic devices. It is a multiple-step sequence of photolithographic and chemical processing steps during which electronic circuits are gradually created on a wafer made of pure semiconducting material. Silicon is almost always used, but various compound semiconductors are used for specialized applications.

Materials for MEMS manufacturing

The fabrication of MEMS evolved from the process technology in semiconductor device fabrication, i.e. the basic techniques are deposition of material layers, patterning by photolithography and etching to produce the required shapes. [7]

In chemistry, deposition occurs when molecules settle out of a solution.

Photolithography, also termed optical lithography or UV lithography, is a process used in microfabrication to pattern parts of a thin film or the bulk of a substrate. It uses light to transfer a geometric pattern from a photomask to a light-sensitive chemical "photoresist", or simply "resist," on the substrate. A series of chemical treatments then either engraves the exposure pattern into the material or enables deposition of a new material in the desired pattern upon the material underneath the photo resist. For example, in complex integrated circuits, a modern CMOS wafer will go through the photolithographic cycle up to 50 times.

Silicon

Silicon is the material used to create most integrated circuits used in consumer electronics in the modern industry. The economies of scale, ready availability of inexpensive high-quality materials, and ability to incorporate electronic functionality make silicon attractive for a wide variety of MEMS applications. Silicon also has significant advantages engendered through its material properties. In single crystal form, silicon is an almost perfect Hookean material, meaning that when it is flexed there is virtually no hysteresis and hence almost no energy dissipation. As well as making for highly repeatable motion, this also makes silicon very reliable as it suffers very little fatigue and can have service lifetimes in the range of billions to trillions of cycles without breaking.

Silicon Chemical element with atomic number 14

Silicon is a chemical element with symbol Si and atomic number 14. It is a hard and brittle crystalline solid with a blue-grey metallic lustre; and it is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic table: carbon is above it; and germanium, tin, and lead are below it. It is relatively unreactive. Because of its high chemical affinity for oxygen, it was not until 1823 that Jöns Jakob Berzelius was first able to prepare it and characterize it in pure form. Its melting and boiling points of 1414 °C and 3265 °C respectively are the second-highest among all the metalloids and nonmetals, being only surpassed by boron. Silicon is the eighth most common element in the universe by mass, but very rarely occurs as the pure element in the Earth's crust. It is most widely distributed in dusts, sands, planetoids, and planets as various forms of silicon dioxide (silica) or silicates. More than 90% of the Earth's crust is composed of silicate minerals, making silicon the second most abundant element in the Earth's crust after oxygen.

Integrated circuit electronic circuit manufactured by lithography; set of electronic circuits on one small flat piece (or "chip") of semiconductor material, normally silicon 639-1 ısoo

An integrated circuit or monolithic integrated circuit is a set of electronic circuits on one small flat piece of semiconductor material that is normally silicon. The integration of large numbers of tiny transistors into a small chip results in circuits that are orders of magnitude smaller, cheaper, and faster than those constructed of discrete electronic components. The IC's mass production capability, reliability and building-block approach to circuit design has ensured the rapid adoption of standardized ICs in place of designs using discrete transistors. ICs are now used in virtually all electronic equipment and have revolutionized the world of electronics. Computers, mobile phones, and other digital home appliances are now inextricable parts of the structure of modern societies, made possible by the small size and low cost of ICs.

Economies of scale the cost advantages that enterprises obtain due to size, throughput, or scale of operation, with cost per unit of output generally decreasing with increasing scale as fixed costs are spread out over more units of output

In microeconomics, economies of scale are the cost advantages that enterprises obtain due to their scale of operation, with cost per unit of output decreasing with increasing scale.

Polymers

Even though the electronics industry provides an economy of scale for the silicon industry, crystalline silicon is still a complex and relatively expensive material to produce. Polymers on the other hand can be produced in huge volumes, with a great variety of material characteristics. MEMS devices can be made from polymers by processes such as injection molding, embossing or stereolithography and are especially well suited to microfluidic applications such as disposable blood testing cartridges.

Embossing (manufacturing) a stamping process for producing sunken designs in sheet metal or other materials

Sheet metal embossing is a stamping process for producing raised or sunken designs or relief in sheet metal. This process can be made by means of matched male and female roller dies, or by passing sheet or a strip of metal between rolls of the desired pattern. It is often combined with foil stamping to create a shiny, 3D effect.

Stereolithography form of 3D printing that uses photopolymerization

Stereolithography is a form of 3D printing technology used for creating models, prototypes, patterns, and production parts in a layer by layer fashion using photochemical processes by which light causes chemical monomers to link together to form polymers. Those polymers then make up the body of a three-dimensional solid. Research in the area had been conducted during the 1970s, but the term was coined by Chuck Hull in 1984 when he applied for a patent on the process, which was granted in 1986. Stereolithography can be used to create things such as prototypes for products in development, medical models, and computer hardware, as well as in many other applications. While stereolithography is fast and can produce almost any design, it can be expensive.

Metals

Metals can also be used to create MEMS elements. While metals do not have some of the advantages displayed by silicon in terms of mechanical properties, when used within their limitations, metals can exhibit very high degrees of reliability. Metals can be deposited by electroplating, evaporation, and sputtering processes. Commonly used metals include gold, nickel, aluminium, copper, chromium, titanium, tungsten, platinum, and silver.

Ceramics

The nitrides of silicon, aluminium and titanium as well as silicon carbide and other ceramics are increasingly applied in MEMS fabrication due to advantageous combinations of material properties. AlN crystallizes in the wurtzite structure and thus shows pyroelectric and piezoelectric properties enabling sensors, for instance, with sensitivity to normal and shear forces. [8] TiN, on the other hand, exhibits a high electrical conductivity and large elastic modulus, making it possible to implement electrostatic MEMS actuation schemes with ultrathin membranes. [9] Moreover, the high resistance of TiN against biocorrosion qualifies the material for applications in biogenic environments and in biosensors.

MEMS basic processes

Deposition processes

One of the basic building blocks in MEMS processing is the ability to deposit thin films of material with a thickness anywhere between one micrometre, to about 100 micrometres. The NEMS process is the same, although the measurement of film deposition ranges from a few nanometres to one micrometre. There are two types of deposition processes, as follows.

Physical deposition

Physical vapor deposition ("PVD") consists of a process in which a material is removed from a target, and deposited on a surface. Techniques to do this include the process of sputtering, in which an ion beam liberates atoms from a target, allowing them to move through the intervening space and deposit on the desired substrate, and evaporation, in which a material is evaporated from a target using either heat (thermal evaporation) or an electron beam (e-beam evaporation) in a vacuum system.

Chemical deposition

Chemical deposition techniques include chemical vapor deposition ("CVD"), in which a stream of source gas reacts on the substrate to grow the material desired. This can be further divided into categories depending on the details of the technique, for example, LPCVD (Low Pressure chemical vapor deposition) and PECVD (Plasma-enhanced chemical vapor deposition).

Oxide films can also be grown by the technique of thermal oxidation, in which the (typically silicon) wafer is exposed to oxygen and/or steam, to grow a thin surface layer of silicon dioxide.

Patterning

Patterning in MEMS is the transfer of a pattern into a material.

Lithography

Lithography in MEMS context is typically the transfer of a pattern into a photosensitive material by selective exposure to a radiation source such as light. A photosensitive material is a material that experiences a change in its physical properties when exposed to a radiation source. If a photosensitive material is selectively exposed to radiation (e.g. by masking some of the radiation) the pattern of the radiation on the material is transferred to the material exposed, as the properties of the exposed and unexposed regions differs.

This exposed region can then be removed or treated providing a mask for the underlying substrate. Photolithography is typically used with metal or other thin film deposition, wet and dry etching. Sometimes, photolithography is used to create structure without any kind of post etching. One example is SU8 based lens where SU8 based square blocks are generated. Then the photoresist is melted to form a semi-sphere which acts as a lens.

Electron beam lithography

Electron beam lithography (often abbreviated as e-beam lithography) is the practice of scanning a beam of electrons in a patterned fashion across a surface covered with a film (called the resist), [10] ("exposing" the resist) and of selectively removing either exposed or non-exposed regions of the resist ("developing"). The purpose, as with photolithography, is to create very small structures in the resist that can subsequently be transferred to the substrate material, often by etching. It was developed for manufacturing integrated circuits, and is also used for creating nanotechnology architectures.

The primary advantage of electron beam lithography is that it is one of the ways to beat the diffraction limit of light and make features in the nanometer range. This form of maskless lithography has found wide usage in photomask-making used in photolithography, low-volume production of semiconductor components, and research & development.

The key limitation of electron beam lithography is throughput, i.e., the very long time it takes to expose an entire silicon wafer or glass substrate. A long exposure time leaves the user vulnerable to beam drift or instability which may occur during the exposure. Also, the turn-around time for reworking or re-design is lengthened unnecessarily if the pattern is not being changed the second time.

Ion beam lithography

It is known that focused-ion beam lithography has the capability of writing extremely fine lines (less than 50 nm line and space has been achieved) without proximity effect.[ citation needed ] However, because the writing field in ion-beam lithography is quite small, large area patterns must be created by stitching together the small fields.

Ion track technology

Ion track technology is a deep cutting tool with a resolution limit around 8 nm applicable to radiation resistant minerals, glasses and polymers. It is capable of generating holes in thin films without any development process. Structural depth can be defined either by ion range or by material thickness. Aspect ratios up to several 104 can be reached. The technique can shape and texture materials at a defined inclination angle. Random pattern, single-ion track structures and aimed pattern consisting of individual single tracks can be generated.

X-ray lithography

X-ray lithography is a process used in electronic industry to selectively remove parts of a thin film. It uses X-rays to transfer a geometric pattern from a mask to a light-sensitive chemical photoresist, or simply "resist", on the substrate. A series of chemical treatments then engraves the produced pattern into the material underneath the photoresist.

Diamond patterning

A simple way to carve or create patterns on the surface of nanodiamonds without damaging them could lead to a new photonic devices.[ citation needed ]

Diamond patterning is a method of forming diamond MEMS. It is achieved by the lithographic application of diamond films to a substrate such as silicon. The patterns can be formed by selective deposition through a silicon dioxide mask, or by deposition followed by micromachining or focused ion beam milling. [11]

Etching processes

There are two basic categories of etching processes: wet etching and dry etching. In the former, the material is dissolved when immersed in a chemical solution. In the latter, the material is sputtered or dissolved using reactive ions or a vapor phase etchant. [12] [13]

Wet etching

Wet chemical etching consists in selective removal of material by dipping a substrate into a solution that dissolves it. The chemical nature of this etching process provides a good selectivity, which means the etching rate of the target material is considerably higher than the mask material if selected carefully.

Isotropic etching

Etching progresses at the same speed in all directions. Long and narrow holes in a mask will produce v-shaped grooves in the silicon. The surface of these grooves can be atomically smooth if the etch is carried out correctly, with dimensions and angles being extremely accurate.

Anisotropic etching

Some single crystal materials, such as silicon, will have different etching rates depending on the crystallographic orientation of the substrate. This is known as anisotropic etching and one of the most common examples is the etching of silicon in KOH (potassium hydroxide), where Si <111> planes etch approximately 100 times slower than other planes (crystallographic orientations). Therefore, etching a rectangular hole in a (100)-Si wafer results in a pyramid shaped etch pit with 54.7° walls, instead of a hole with curved sidewalls as with isotropic etching.

HF etching

Hydrofluoric acid is commonly used as an aqueous etchant for silicon dioxide (SiO
2
, also known as BOX for SOI), usually in 49% concentrated form, 5:1, 10:1 or 20:1 BOE (buffered oxide etchant) or BHF (Buffered HF). They were first used in medieval times for glass etching. It was used in IC fabrication for patterning the gate oxide until the process step was replaced by RIE.

Hydrofluoric acid is considered one of the more dangerous acids in the cleanroom. It penetrates the skin upon contact and it diffuses straight to the bone. Therefore, the damage is not felt until it is too late.

Electrochemical etching

Electrochemical etching (ECE) for dopant-selective removal of silicon is a common method to automate and to selectively control etching. An active p-n diode junction is required, and either type of dopant can be the etch-resistant ("etch-stop") material. Boron is the most common etch-stop dopant. In combination with wet anisotropic etching as described above, ECE has been used successfully for controlling silicon diaphragm thickness in commercial piezoresistive silicon pressure sensors. Selectively doped regions can be created either by implantation, diffusion, or epitaxial deposition of silicon.

Dry etching

Vapor etching
Xenon difluoride

Xenon difluoride (XeF
2
) is a dry vapor phase isotropic etch for silicon originally applied for MEMS in 1995 at University of California, Los Angeles. [14] [15] Primarily used for releasing metal and dielectric structures by undercutting silicon, XeF
2
has the advantage of a stiction-free release unlike wet etchants. Its etch selectivity to silicon is very high, allowing it to work with photoresist, SiO
2
, silicon nitride, and various metals for masking. Its reaction to silicon is "plasmaless", is purely chemical and spontaneous and is often operated in pulsed mode. Models of the etching action are available, [16] and university laboratories and various commercial tools offer solutions using this approach.

Plasma etching

Modern VLSI processes avoid wet etching, and use plasma etching instead. Plasma etchers can operate in several modes by adjusting the parameters of the plasma. Ordinary plasma etching operates between 0.1 and 5 Torr. (This unit of pressure, commonly used in vacuum engineering, equals approximately 133.3 pascals.) The plasma produces energetic free radicals, neutrally charged, that react at the surface of the wafer. Since neutral particles attack the wafer from all angles, this process is isotropic.

Plasma etching can be isotropic, i.e., exhibiting a lateral undercut rate on a patterned surface approximately the same as its downward etch rate, or can be anisotropic, i.e., exhibiting a smaller lateral undercut rate than its downward etch rate. Such anisotropy is maximized in deep reactive ion etching. The use of the term anisotropy for plasma etching should not be conflated with the use of the same term when referring to orientation-dependent etching.

The source gas for the plasma usually contains small molecules rich in chlorine or fluorine. For instance, carbon tetrachloride (CCl4) etches silicon and aluminium, and trifluoromethane etches silicon dioxide and silicon nitride. A plasma containing oxygen is used to oxidize ("ash") photoresist and facilitate its removal.

Ion milling, or sputter etching, uses lower pressures, often as low as 10−4 Torr (10 mPa). It bombards the wafer with energetic ions of noble gases, often Ar+, which knock atoms from the substrate by transferring momentum. Because the etching is performed by ions, which approach the wafer approximately from one direction, this process is highly anisotropic. On the other hand, it tends to display poor selectivity. Reactive-ion etching (RIE) operates under conditions intermediate between sputter and plasma etching (between 10–3 and 10−1 Torr). Deep reactive-ion etching (DRIE) modifies the RIE technique to produce deep, narrow features.

Sputtering
Reactive ion etching (RIE)

In reactive-ion etching (RIE), the substrate is placed inside a reactor, and several gases are introduced. A plasma is struck in the gas mixture using an RF power source, which breaks the gas molecules into ions. The ions accelerate towards, and react with, the surface of the material being etched, forming another gaseous material. This is known as the chemical part of reactive ion etching. There is also a physical part, which is similar to the sputtering deposition process. If the ions have high enough energy, they can knock atoms out of the material to be etched without a chemical reaction. It is a very complex task to develop dry etch processes that balance chemical and physical etching, since there are many parameters to adjust. By changing the balance it is possible to influence the anisotropy of the etching, since the chemical part is isotropic and the physical part highly anisotropic the combination can form sidewalls that have shapes from rounded to vertical.

Deep RIE (DRIE) is a special subclass of RIE that is growing in popularity. In this process, etch depths of hundreds of micrometres are achieved with almost vertical sidewalls. The primary technology is based on the so-called "Bosch process", [17] named after the German company Robert Bosch, which filed the original patent, where two different gas compositions alternate in the reactor. Currently there are two variations of the DRIE. The first variation consists of three distinct steps (the original Bosch process) while the second variation only consists of two steps.

In the first variation, the etch cycle is as follows:

(i) SF
6
isotropic etch;
(ii) C
4
F
8
passivation;
(iii) SF
6
anisoptropic etch for floor cleaning.

In the 2nd variation, steps (i) and (iii) are combined.

Both variations operate similarly. The C
4
F
8
creates a polymer on the surface of the substrate, and the second gas composition (SF
6
and O
2
) etches the substrate. The polymer is immediately sputtered away by the physical part of the etching, but only on the horizontal surfaces and not the sidewalls. Since the polymer only dissolves very slowly in the chemical part of the etching, it builds up on the sidewalls and protects them from etching. As a result, etching aspect ratios of 50 to 1 can be achieved. The process can easily be used to etch completely through a silicon substrate, and etch rates are 3–6 times higher than wet etching.

Die preparation

After preparing a large number of MEMS devices on a silicon wafer, individual dies have to be separated, which is called die preparation in semiconductor technology. For some applications, the separation is preceded by wafer backgrinding in order to reduce the wafer thickness. Wafer dicing may then be performed either by sawing using a cooling liquid or a dry laser process called stealth dicing.

MEMS manufacturing technologies

Bulk micromachining

Bulk micromachining is the oldest paradigm of silicon based MEMS. The whole thickness of a silicon wafer is used for building the micro-mechanical structures. [13] Silicon is machined using various etching processes. Anodic bonding of glass plates or additional silicon wafers is used for adding features in the third dimension and for hermetic encapsulation. Bulk micromachining has been essential in enabling high performance pressure sensors and accelerometers that changed the sensor industry in the 1980s and 90's.

Surface micromachining

Surface micromachining uses layers deposited on the surface of a substrate as the structural materials, rather than using the substrate itself. [18] Surface micromachining was created in the late 1980s to render micromachining of silicon more compatible with planar integrated circuit technology, with the goal of combining MEMS and integrated circuits on the same silicon wafer. The original surface micromachining concept was based on thin polycrystalline silicon layers patterned as movable mechanical structures and released by sacrificial etching of the underlying oxide layer. Interdigital comb electrodes were used to produce in-plane forces and to detect in-plane movement capacitively. This MEMS paradigm has enabled the manufacturing of low cost accelerometers for e.g. automotive air-bag systems and other applications where low performance and/or high g-ranges are sufficient. Analog Devices has pioneered the industrialization of surface micromachining and has realized the co-integration of MEMS and integrated circuits.

High aspect ratio (HAR) silicon micromachining

Both bulk and surface silicon micromachining are used in the industrial production of sensors, ink-jet nozzles, and other devices. But in many cases the distinction between these two has diminished. A new etching technology, deep reactive-ion etching, has made it possible to combine good performance typical of bulk micromachining with comb structures and in-plane operation typical of surface micromachining. While it is common in surface micromachining to have structural layer thickness in the range of 2 µm, in HAR silicon micromachining the thickness can be from 10 to 100 µm. The materials commonly used in HAR silicon micromachining are thick polycrystalline silicon, known as epi-poly, and bonded silicon-on-insulator (SOI) wafers although processes for bulk silicon wafer also have been created (SCREAM). Bonding a second wafer by glass frit bonding, anodic bonding or alloy bonding is used to protect the MEMS structures. Integrated circuits are typically not combined with HAR silicon micromachining.

Microelectromechanical systems chip, sometimes called "lab on a chip" Labonachip20017-300.jpg
Microelectromechanical systems chip, sometimes called "lab on a chip"

Applications

A Texas Instruments DMD chip for cinema projection DLP CINEMA. A Texas Instruments Technology - Photo Philippe Binant.jpg
A Texas Instruments DMD chip for cinema projection
Measuring mechanical properties of a gold stripe (width ~1 µm) using MEMS inside a transmission electron microscope. [19]

Some common commercial applications of MEMS include:

Industry structure

The global market for micro-electromechanical systems, which includes products such as automobile airbag systems, display systems and inkjet cartridges totaled $40 billion in 2006 according to Global MEMS/Microsystems Markets and Opportunities, a research report from SEMI and Yole Developpement and is forecasted to reach $72 billion by 2011. [27]

Companies with strong MEMS programs come in many sizes. Larger firms specialize in manufacturing high volume inexpensive components or packaged solutions for end markets such as automobiles, biomedical, and electronics. Smaller firms provide value in innovative solutions and absorb the expense of custom fabrication with high sales margins. Both large and small companies typically invest in R&D to explore new MEMS technology.

The market for materials and equipment used to manufacture MEMS devices topped $1 billion worldwide in 2006. Materials demand is driven by substrates, making up over 70 percent of the market, packaging coatings and increasing use of chemical mechanical planarization (CMP). While MEMS manufacturing continues to be dominated by used semiconductor equipment, there is a migration to 200 mm lines and select new tools, including etch and bonding for certain MEMS applications.

See also

Related Research Articles

Isotropic etching is a method commonly used in semiconductors to remove material from a substrate via a chemical process using an etchant substance. The etchant may be in liquid-, gas- or plasma-phase, although liquid etchants such as buffered hydrofluoric acid (BHF) for silicon dioxide etching are more often used. Unlike anisotropic etching, isotropic etching does not etch in a single direction, but rather etches in multiple directions within the substrate. Any horizontal component of the etch direction may therefore result in undercutting of patterned areas, and significant changes to device characteristics. Isotropic etching may occur unavoidably, or it may be desirable for process reasons.

Reactive-ion etching

Reactive-ion etching (RIE) is an etching technology used in microfabrication. RIE is a type of dry etching which has different characteristics than wet etching. RIE uses chemically reactive plasma to remove material deposited on wafers. The plasma is generated under low pressure (vacuum) by an electromagnetic field. High-energy ions from the plasma attack the wafer surface and react with it.

Dry etching refers to the removal of material, typically a masked pattern of semiconductor material, by exposing the material to a bombardment of ions that dislodge portions of the material from the exposed surface. A common type of dry etching is reactive-ion etching. Unlike with many of the wet chemical etchants used in wet etching, the dry etching process typically etches directionally or anisotropically.

Surface micromachining builds microstructures by deposition and etching structural layers over a substrate. This is different from Bulk micromachining, in which a silicon substrate wafer is selectively etched to produce structures.

Bulk micromachining is a process used to produce micromachinery or microelectromechanical systems (MEMS).

Nanolithography is the branch of nanotechnology concerned with the study and application of fabricating nanometer-scale structures, meaning patterns with at least one lateral dimension between 1 and 1,000 nm. Different approaches can be categorized in serial or parallel, mask or maskless/direct-write, top-down or bottom-up, beam or tip-based, resist-based or resist-less methods. As of 2015, nanolithography is a very active area of research in academia and in industry. Applications of nanolithography include among others: Multigate devices such as Field effect transistors (FET), Quantum dots, Nanowires, Gratings, Zone plates and Photomasks, nanoelectromechanical systems (NEMS), or semiconductor integrated circuits (nanocircuitry).

In semiconductor fabrication, a resist is a thin layer used to transfer a circuit pattern to the semiconductor substrate which it is deposited upon. A resist can be patterned via lithography to form a (sub)micrometer-scale, temporary mask that protects selected areas of the underlying substrate during subsequent processing steps. The material used to prepare said thin layer is typically a viscous solution. Resists are generally proprietary mixtures of a polymer or its precursor and other small molecules that have been specially formulated for a given lithography technology. Resists used during photolithography are called photoresists.

Deep reactive-ion etching (DRIE) is a highly anisotropic etch process used to create deep penetration, steep-sided holes and trenches in wafers/substrates, typically with high aspect ratios. It was developed for microelectromechanical systems (MEMS), which require these features, but is also used to excavate trenches for high-density capacitors for DRAM and more recently for creating through silicon vias (TSVs) in advanced 3D wafer level packaging technology.

Microfabrication processes of fabrication of miniature structures

Microfabrication is the process of fabricating miniature structures of micrometre scales and smaller. Historically, the earliest microfabrication processes were used for integrated circuit fabrication, also known as "semiconductor manufacturing" or "semiconductor device fabrication". In the last two decades microelectromechanical systems (MEMS), microsystems, micromachines and their subfields, microfluidics/lab-on-a-chip, optical MEMS, RF MEMS, PowerMEMS, BioMEMS and their extension into nanoscale have re-used, adapted or extended microfabrication methods. Flat-panel displays and solar cells are also using similar techniques.

Plasma etching is a form of plasma processing used to fabricate integrated circuits. It involves a high-speed stream of glow discharge (plasma) of an appropriate gas mixture being shot at a sample. The plasma source, known as etch species, can be either charged (ions) or neutral. During the process, the plasma generates volatile etch products at room temperature from the chemical reactions between the elements of the material etched and the reactive species generated by the plasma. Eventually the atoms of the shot element embed themselves at or just below the surface of the target, thus modifying the physical properties of the target.

Advanced silicon etching (ASE) is a deep reactive-ion etching (DRIE) technique to rapidly etch deep and high aspect ratio structures in silicon. ASE was pioneered by Surface Technology Systems Plc. (STS) in 1994 in the UK. STS has continued to develop this process with even greater etch rates while maintaining side wall roughness and selectivity. STS developed the switched process originally invented by Dr. Larmer at Bosch, Stuttgart. ASE consists in combining the fast etch rates achieved in an isotropic Si etch (usually making use of an SF6 plasma) with a deposition or passivation process (usually utilising a C4F8 plasma condensation process) by alternating the two process steps. This approach achieves the fastest etch rates while maintaining the ability to etch anisotropically, typically vertically in Microelectromechanical Systems (microelectromechanical systems (MEMS)) applications.

The ASE HRM is an evolution of the previous generations of ICP design, now incorporating a decoupled plasma source (patent pending). This decoupled source generates very high density plasma which is allowed to diffuse into a separate process chamber. Through careful chamber design, the excess ions that are detrimental to process control are reduced, leaving a uniform distribution of fluorine free-radicals at a higher density than that available from the conventional ICP sources. The higher fluorine free-radical density facilitates increased etch rates, typically over three times the etch rates achieved with the original Bosch process. Also, as a result of the reduction in the effect of localised depletion of these species, improved uniformity for many applications can be achieved.

Etching (microfabrication) technique in microfabrication

Etching is used in microfabrication to chemically remove layers from the surface of a wafer during manufacturing. Etching is a critically important process module, and every wafer undergoes many etching steps before it is complete.

Micro-Opto-Electro-Mechanical Systems (MOEMS) are not a special class of Micro-Electro-Mechanical Systems (MEMS) but rather the combination of MEMS merged with Micro-optics; this involves sensing or manipulating optical signals on a very small size scale using integrated mechanical, optical, and electrical systems. MOEMS includes a wide variety of devices including optical switch, optical cross-connect, tunable VCSEL, microbolometers amongst others. These devices are usually fabricated using micro-optics and standard micromachining technologies using materials like silicon, silicon dioxide, silicon nitride and gallium arsenide.

Lift-off process in microstructuring technology is a method of creating structures (patterning) of a target material on the surface of a substrate using a sacrificial material . It is an additive technique as opposed to more traditional subtracting technique like etching. The scale of the structures can vary from the nanoscale up to the centimeter scale or further, but are typically of micrometric dimensions.

Stencil lithography is a novel method of fabricating nanometer scale patterns using nanostencils, stencils with nanometer size apertures. It is a resist-less, simple, parallel nanolithography process, and it does not involve any heat or chemical treatment of the substrates .

Anodic bonding is a wafer bonding process to seal glass to either silicon or metal without introducing an intermediate layer; it is commonly used to seal glass to silicon wafers in electronics and microfluidics. This bonding technique, also known as field assisted bonding or electrostatic sealing, is mostly used for connecting silicon/glass and metal/glass through electric fields. The requirements for anodic bonding are clean and even wafer surfaces and atomic contact between the bonding substrates through a sufficiently powerful electrostatic field. Also necessary is the use of borosilicate glass containing a high concentration of alkali ions. The coefficient of thermal expansion (CTE) of the processed glass needs to be similar to those of the bonding partner.

Eutectic bonding

Eutectic bonding, also referred to as eutectic soldering, describes a wafer bonding technique with an intermediate metal layer that can produce a eutectic system. Those eutectic metals are alloys that transform directly from solid to liquid state, or vice versa from liquid to solid state, at a specific composition and temperature without passing a two-phase equilibrium, i.e. liquid and solid state. The fact that the eutectic temperature can be much lower than the melting temperature of the two or more pure elements can be important in eutectic bonding.

Perfluorodecyltrichlorosilane, also known as FDTS, is a colorless liquid chemical with molecular formula C10H4Cl3F17Si. FDTS molecules form self-assembled monolayers. They bond onto surfaces terminated with hydroxyl (-OH) groups, such as glass, ceramics, or SiO2 forming a regular covalent bond. It anchors on oxide surfaces with its tricholoro-silane group and attaches covalently.

References

  1. Gabriel, Kaigham; Jarvis, John; Trimmer, William (1988). Small Machines, Large Opportunities: A Report on the Emerging Field of Microdynamics : Report of the Workshop on Microelectromechanical Systems Research ; Sponsored by the National Science Foundation. AT&T Bell Laboratories.
  2. Waldner, Jean-Baptiste (2008). Nanocomputers and Swarm Intelligence. London: ISTE John Wiley & Sons. p. 205. ISBN   978-1-84821-009-7.
  3. James B. Angell; Stephen C. Terry; Phillip W. Barth (April 1983). "Silicon Micromechanical Devices". Scientific American . 248 (4): 44–55. doi:10.1038/scientificamerican0483-44.
  4. Electromechanical monolithic resonator, U.S. patent 3614677, Filed April 29, 1966; Issued October 1971
  5. Wilfinger, R.J.; Bardell, P.H.; Chhabra, D.S. (1968). "The Resonistor: A Frequency Selective Device Utilizing the Mechanical Resonance of a Silicon Substrate". IBM J. 12: 113–8. doi:10.1147/rd.121.0113.
  6. Nathanson, H. C.; Wickstrom, R. A. (15 August 1965). "A Resonant-Gate Silicon Surface Transistor with High-Q Band-Pass Properties". Applied Physics Letters. 7 (4): 84–86. doi:10.1063/1.1754323.
  7. R. Ghodssi; P. Lin (2011). MEMS Materials and Processes Handbook. Berlin: Springer. ISBN   978-0-387-47316-1.
  8. T. Polster; M. Hoffmann (2009). "Aluminium nitride based 3D, piezoelectric, tactile sensors". Proc. Chem. 1: 144–7. doi:10.1016/j.proche.2009.07.036.
  9. M. Birkholz; K.-E. Ehwald; P. Kulse; J. Drews; M. Fröhlich; U. Haak; M. Kaynak; E. Matthus; K. Schulz; D. Wolansky (2011). "Ultrathin TiN membranes as a technology platform for CMOS-integrated MEMS and BioMEMS devices". Adv. Func. Mat. 21 (9): 1652–1654. doi:10.1002/adfm.201002062.
  10. McCord, M. A.; M. J. Rooks (2000). "2". SPIE Handbook of Microlithography, Micromachining and Microfabrication.
  11. Marc J. Madou, Fundamentals of Microfabrication and Nanotechnology, Volume III: From MEMS to Bio-MEMS and Bio-NEMS: Manufacturing Techniques and Applications, p. 252, CRC Press, 2011 ISBN   1439895244.
  12. Williams, K.R.; Muller, R.S. (1996). "Etch rates for micromachining processing" (PDF). Journal of Microelectromechanical Systems. 5 (4): 256. CiteSeerX   10.1.1.120.3130 . doi:10.1109/84.546406.
  13. 1 2 Kovacs, G.T.A.; Maluf, N.I.; Petersen, K.E. (1998). "Bulk micromachining of silicon" (PDF). Proceedings of the IEEE. 86 (8): 1536. doi:10.1109/5.704259.
  14. Chang, Floy I. (1995). "Gas-phase silicon micromachining with xenon difluoride". Microelectronic Structures and Microelectromechanical Devices for Optical Processing and Multimedia Applications. Microelectronic Structures and Microelectromechanical Devices for Optical Processing and Multimedia Applications. 2641. p. 117. doi:10.1117/12.220933.
  15. Chang, Floy I-Jung (1995). Xenon difluoride etching of silicon for MEMS (M.S.). Los Angeles: University of California. OCLC   34531873.
  16. Brazzle, J.D.; Dokmeci, M.R.; Mastrangelo, C.H. (2004). "Modeling and characterization of sacrificial polysilicon etching using vapor-phase xenon difluoride". 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest. p. 737. doi:10.1109/MEMS.2004.1290690. ISBN   978-0-7803-8265-7.
  17. Laermer, F.; Urban, A. (2005). "Milestones in deep reactive ion etching". The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05. 2. p. 1118. doi:10.1109/SENSOR.2005.1497272. ISBN   978-0-7803-8994-6.
  18. Bustillo, J. M.; Howe, R. T.; Muller, R. S. (August 1998). "Surface Micromachining for Microelectromechanical Systems" (PDF). Proceedings of the IEEE . 86 (8): 1552–1574. CiteSeerX   10.1.1.120.4059 . doi:10.1109/5.704260.
  19. Hosseinian, Ehsan; Pierron, Olivier N. (2013). "Quantitative in situ TEM tensile fatigue testing on nanocrystalline metallic ultrathin films". Nanoscale. 5 (24): 12532–41. doi:10.1039/C3NR04035F. PMID   24173603.
  20. Cenk Acar; Andrei M. Shkel (2008). MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness. pp. 111 ff. ISBN   978-0-387-09535-6.
  21. Johnson, R. Collin (2007-07-09). There's more to MEMS than meets the iPhone, EE Times
  22. By Peter Clarke, EE Times Europe. “Smart MEMS microphones market emerges.” May 31, 2016. Retrieved June 1, 2016.
  23. Louizos, Louizos-Alexandros; Athanasopoulos, Panagiotis G.; Varty, Kevin (2012). "Microelectromechanical Systems and Nanotechnology. A Platform for the Next Stent Technological Era". Vasc Endovascular Surg. 46 (8): 605–609. doi:10.1177/1538574412462637. PMID   23047818.
  24. Hajati, Arman; Sang-Gook Kim (2011). "Ultra-wide bandwidth piezoelectric energy harvesting". Applied Physics Letters. 99 (8): 083105. doi:10.1063/1.3629551.
  25. Hajati, Arman (2012). "Three-dimensional micro electromechanical system piezoelectric ultrasound transducer". Applied Physics Letters. 101 (25): 253101. doi:10.1063/1.4772469.
  26. Hajati, Arman (2013). "Monolithic ultrasonic integrated circuits based on micromachined semi-ellipsoidal piezoelectric domes". Applied Physics Letters. 103 (20): 202906. doi:10.1063/1.4831988.
  27. Worldwide MEMS Systems Market Forecasted to Reach $72 Billion by 2011. Azonano.com (2007-07-17). Retrieved on 2015-10-05.