Presumptive tests, in medical and forensic science, analyze a sample and establish one of the following:
For example, the Kastle–Meyer test will show either that a sample is not blood or that the sample is probably blood, but may be a less common substance. Further chemical tests are needed to prove that the substance is blood.
Confirmatory tests are the tests required to confirm the analysis. Confirmatory tests cost more than simpler presumptive tests so presumptive tests are often done to see if confirmatory tests are necessary.
Similarly, in medicine, a presumptive diagnosis identifies the likely condition of a patient, and a confirmatory diagnosis is needed to confirm the condition.
The US Food and Drug Administration issued a Premarket Submission and Labeling Recommendations for Drugs of Abuse Screening Tests. Its availability was announced in the Federal Register, Vol. 68, No. 231 on December 2, 2003 and is listed under "Notices." Presumptive testing has found widespread use by employers and public entities. Most people who take a drug test take a presumptive test, cheaper and faster than other methods of testing. However, it is less accurate and can render false results. The FDA recommends for confirmatory testing to be conducted and the placing of a warning label on the presumptive drug test: "This assay provides only a preliminary result. Clinical consideration and professional judgment should be applied to any drug of abuse test result, in evaluating a preliminary positive result. To obtain a confirmed analytical result, a more specific alternate chemical method is needed. Gas chromatography/mass spectrometry (GC/MS) is the recommended confirmatory method."
The enzyme-linked immunosorbent assay (ELISA) is a commonly used analytical biochemistry assay, first described by Eva Engvall and Peter Perlmann in 1971. The assay is a solid-phase type of enzyme immunoassay (EIA) to detect the presence of a ligand in a liquid sample using antibodies directed against the ligand to be measured. ELISA has been used as a diagnostic tool in medicine, plant pathology, and biotechnology, as well as a quality control check in various industries.
Marquis reagent is used as a simple spot-test to presumptively identify alkaloids as well as other compounds. It is composed of a mixture of formaldehyde and concentrated sulfuric acid, which is dripped onto the substance being tested. The United States Department of Justice method for producing the reagent is the addition of 100 mL of concentrated (95–98%) sulfuric acid to 5 mL of 40% formaldehyde. Different compounds produce different color reactions. Methanol may be added to slow down the reaction process to allow better observation of the colour change.
HIV tests are used to detect the presence of the human immunodeficiency virus (HIV), the virus that causes HIV/AIDS, in serum, saliva, or urine. Such tests may detect antibodies, antigens, or RNA.
Urinalysis, a portmanteau of the words urine and analysis, is a panel of medical tests that includes physical (macroscopic) examination of the urine, chemical evaluation using urine test strips, and microscopic examination. Macroscopic examination targets parameters such as color, clarity, odor, and specific gravity; urine test strips measure chemical properties such as pH, glucose concentration, and protein levels; and microscopy is performed to identify elements such as cells, urinary casts, crystals, and organisms.
Hair analysis may refer to the chemical analysis of a hair sample, but can also refer to microscopic analysis or comparison. Chemical hair analysis may be considered for retrospective purposes when blood and urine are no longer expected to contain a particular contaminant, typically three months or less.
A drug test is a technical analysis of a biological specimen, for example urine, hair, blood, breath, sweat, or oral fluid/saliva—to determine the presence or absence of specified parent drugs or their metabolites. Major applications of drug testing include detection of the presence of performance enhancing steroids in sport, employers and parole/probation officers screening for drugs prohibited by law and police officers testing for the presence and concentration of alcohol (ethanol) in the blood commonly referred to as BAC. BAC tests are typically administered via a breathalyzer while urinalysis is used for the vast majority of drug testing in sports and the workplace. Numerous other methods with varying degrees of accuracy, sensitivity, and detection periods exist.
Forensic toxicology is a multidisciplinary field that combines the principles of toxicology with expertise in disciplines such as analytical chemistry, pharmacology and clinical chemistry to aid medical or legal investigation of death, poisoning, and drug use. The paramount focus for forensic toxicology is not the legal implications of the toxicological investigation or the methodologies employed, but rather the acquisition and accurate interpretation of results. Toxicological analyses can encompass a wide array of samples. In the course of an investigation, a forensic toxicologist must consider the context of an investigation, in particular any physical symptoms recorded, and any evidence collected at a crime scene that may narrow the search, such as pill bottles, powders, trace residue, and any available chemicals. Armed with this contextual information and samples to examine, the forensic toxicologist is tasked with identifying the specific toxic substances present, quantifying their concentrations, and assessing their likely impact on the individual involved.
In chemistry, a chemical test is a qualitative or quantitative procedure designed to identify, quantify, or characterise a chemical compound or chemical group.
The Kastle–Meyer test is a presumptive blood test, first described in 1903, in which the chemical indicator phenolphthalein is used to detect the possible presence of hemoglobin. It relies on the peroxidase-like activity of hemoglobin in blood to catalyze the oxidation of phenolphthalin into phenolphthalein, which is visible as a bright pink color. The Kastle–Meyer test is a form of catalytic blood test, one of the two main classes of forensic tests commonly employed by crime labs in the chemical identification of blood. The other class of tests used for this purpose are microcrystal tests, such as the Teichmann crystal test and the Takayama crystal test.
Reagent testing is one of the processes used to identify substances contained within a pill, usually illicit substances. With the increased prevalence of drugs being available in their pure forms, the terms "drug checking" or "pill testing" may also be used, although these terms usually refer to testing with a wider variety of techniques covered by drug checking.
Ehrlich's reagent or Ehrlich reagent is a reagent containing p-dimethylaminobenzaldehyde (DMAB) and thus can act as an indicator to presumptively identify indoles and urobilinogen. Several Ehrlich tests use the reagent in a medical test; some are drug tests and others contribute to diagnosis of various diseases or adverse drug reactions. It is named after Nobel Prize winner Paul Ehrlich who used it to distinguish typhoid from simple diarrhoea.
Forensic serology is the detection, identification, classification, and study of various bodily fluids such as blood, semen, saliva, and urine, and their relationship to a crime scene. A forensic serologist may also be involved in DNA analysis and bloodstain pattern analysis. Serology testing begins with presumptive tests which gives the analyst an indication that a specific bodily fluid may be present, but cannot completely confirm its presence. Following the presumptive tests, confirmatory tests are done on the same sample to confirm what the unknown substance actually is.
The Mecke reagent is used as a simple spot-test to presumptively identify alkaloids as well as other compounds. It is composed of a mixture of selenous acid and concentrated sulfuric acid, which is dripped onto the substance being tested.
Simon's reagent is used as a simple spot-test to presumptively identify alkaloids as well as other compounds. It reacts with secondary amines like MDMA and methamphetamine to give a blue solution.
The Froehde reagent is used as a simple spot-test to presumptively identify alkaloids, especially opioids, as well as other compounds. It is composed of a mixture of molybdic acid or a molybdate salt dissolved in hot, concentrated sulfuric acid, which is then dripped onto the substance being tested.
The Dille–Koppanyi reagent is used as a simple spot-test to presumptively identify barbiturates. It is composed of a mixture of two solutions. Part A is 0.1 g of cobalt(II) acetate dihydrate dissolved in 100 ml of methanol mixed with 0.2 ml of glacial acetic acid. Part B made up of is 5% isopropylamine (v/v) in methanol. Two drops of A are dropped onto the substance followed by one drop of B and any change in colour is observed.
Cannabis drug testing describes various drug test methodologies for the use of cannabis in medicine, sport, and law. Cannabis use is highly detectable and can be detected by urinalysis, hair analysis, as well as saliva tests for days or weeks.
The Gallic acid reagent is used as a simple spot-test to presumptively identify drug precursor chemicals. It is composed of a mixture of gallic acid and concentrated sulfuric acid.
The Zimmermann reagent is used as a simple spot-test used in chromatography to presumptively identify alkaloids, especially benzodiazepines, as well as other compounds. It is therefore used in drugs testing.
The Chen-Kao reaction is a chemical method for determining the presence of pseudoephedrine, ephedrine, and similar phenylalkylamines. The reaction is used in spot tests and is also known as Chen-Kao test. The test is often used to distinguish ephedrine, pseudoephedrine, norephedrine, cathinone and methcathinone from amphetamine and methamphetamine, which do not react with Chen’s test reagent.