Projective orthogonal group

Last updated

In projective geometry and linear algebra, the projective orthogonal group PO is the induced action of the orthogonal group of a quadratic space V = (V,Q) [note 1] on the associated projective space P(V). Explicitly, the projective orthogonal group is the quotient group

Contents

PO(V) = O(V)/ZO(V) = O(V)/{±I}

where O(V) is the orthogonal group of (V) and ZO(V)={±I} is the subgroup of all orthogonal scalar transformations of V – these consist of the identity and reflection through the origin. These scalars are quotiented out because they act trivially on the projective space and they form the kernel of the action, and the notation "Z" is because the scalar transformations are the center of the orthogonal group.

The projective special orthogonal group, PSO, is defined analogously, as the induced action of the special orthogonal group on the associated projective space. Explicitly:

PSO(V) = SO(V)/ZSO(V)

where SO(V) is the special orthogonal group over V and ZSO(V) is the subgroup of orthogonal scalar transformations with unit determinant. Here ZSO is the center of SO, and is trivial in odd dimension, while it equals {±1} in even dimension – this odd/even distinction occurs throughout the structure of the orthogonal groups. By analogy with GL/SL and GO/SO, the projective orthogonal group is also sometimes called the projective general orthogonal group and denoted PGO.

Like the orthogonal group, the projective orthogonal group can be defined over any field and with varied quadratic forms, though, as with the ordinary orthogonal group, the main emphasis is on the realpositive definite projective orthogonal group; other fields are elaborated in generalizations, below. Except when mentioned otherwise, in the sequel PO and PSO will refer to the real positive definite groups.

Like the spin groups and pin groups, which are covers rather than quotients of the (special) orthogonal groups, the projective (special) orthogonal groups are of interest for (projective) geometric analogs of Euclidean geometry, as related Lie groups, and in representation theory.

More intrinsically, the (real positive definite) projective orthogonal group PO can be defined as the isometries of elliptic space (in the sense of elliptic geometry), while PSO can be defined as the orientation-preserving isometries of elliptic space (when the space is orientable; otherwise PSO = PO).

Structure

Odd and even dimensions

SO-O-PSO-PO-2k.svg

The structure of PO differs significantly between odd and even dimension, fundamentally because in even dimension, reflection through the origin is orientation-preserving, while in odd dimension it is orientation-reversing ( but ). This is seen in the fact that each odd-dimensional real projective space is orientable, while each even-dimensional real projective space of positive dimension is non-orientable. At a more abstract level, the Lie algebras of odd- and even-dimensional projective orthogonal groups form two different families:

Thus, O(2k+1) = SO(2k+1) × {±I}, [note 2] while and is instead a non-trivial central extension of PO(2k).

Beware that PO(2k+1) is isometries of RP2k = P(R2k+1),</math> while PO(2k) is isometries of RP2k−1 = P(R2k) – the odd-dimensional (vector) group is isometries of even-dimensional projective space, while the even-dimensional (vector) group is isometries of odd-dimensional projective space.

SO-O-PSO-PO-2k+1.svg

In odd dimension, [note 3] so the group of projective isometries can be identified with the group of rotational isometries.

In even dimension, SO(2k)  PSO(2k) and O(2k)  PO(2k) are both 2-to-1 covers, and PSO(2k) < PO(2k) is an index 2 subgroup.

General properties

PSO and PO are centerless, as with PSL and PGL; this is because scalar matrices are not only the center of SO and O, but also the hypercenter (quotient by the center does not always yield a centerless group).

PSO is the maximal compact subgroup in the projective special linear group PSL, while PO is maximal compact in the projective general linear group PGL. This is analogous to SO being maximal compact in SL and O being maximal compact in GL.

Representation theory

PO is of basic interest in representation theory: a group homomorphism G  PGL is called a projective representation of G, just as a map G  GL is called a linear representation of G, and just as any linear representation can be reduced to a map G  O (by taking an invariant inner product), any projective representation can be reduced to a map G  PO.

See projective linear group: representation theory for further discussion.

Subgroups

Subgroups of the projective orthogonal group correspond to subgroups of the orthogonal group that contain −I (that have central symmetry). As always with a quotient map (by the lattice theorem), there is a Galois connection between subgroups of O and PO, where the adjunction on O (given by taking the image in PO and then the preimage in O) simply adds −I if absent.

Of particular interest are discrete subgroups, which can be realized as symmetries of projective polytopes – these correspond to the (discrete) point groups that include central symmetry. Compare with discrete subgroups of the Spin group, particularly the 3-dimensional case of binary polyhedral groups.

For example, in 3 dimensions, 4 of the 5 Platonic solids have central symmetry (cube/octahedron, dodecahedron/icosahedron), while the tetrahedron does not – however, the stellated octahedron has central symmetry, though the resulting symmetry group is the same as that of the cube/octahedron.

Topology

PO and PSO, as centerless topological groups, are at the bottom of a sequence of covering groups, whose top are the (simply connected) Pin groups or Spin group, respectively:

Pin±(n)  O(n)  PO(n).
Spin(n)  SO(n)  PSO(n).

These groups are all compact real forms of the same Lie algebra.

These are all 2-to-1 covers, except for SO(2k+1)  PSO(2k+1) which is 1-to-1 (an isomorphism).

Homotopy groups

Homotopy groups above do not change under covers, so they agree with those of the orthogonal group. The lower homotopy groups are given as follows.

The fundamental group of (centerless) PSO(n) equals the center of (simply connected) Spin(n), which is always true about covering groups:

Using the table of centers of Spin groups yields (for ):

In low dimensions:

as the group is trivial.
as it is topologically a circle, though note that the preimage of the identity in Spin(2) is as for other

Homology groups

Bundles

Just as the orthogonal group is the structure group of vector bundles, the projective orthogonal group is the structure group of projective bundles, and the corresponding classifying space is denoted BPO.

Generalizations

As with the orthogonal group, the projective orthogonal group can be generalized in two main ways: changing the field or changing the quadratic form. Other than the real numbers, primary interest is in complex numbers or finite fields, while (over the reals) quadratic forms can also be indefinite forms, and are denoted PO(p,q) by their signature.

The complex projective orthogonal group, PO(n,C) should not be confused with the projective unitary group, PU(n): PO preserves a symmetric form, while PU preserves a hermitian form – PU is the symmetries of complex projective space (preserving the Fubini–Study metric).

In fields of characteristic 2 there are added complications: quadratic forms and symmetric bilinear forms are no longer equivalent, I = −I, and the determinant needs to be replaced by the Dickson invariant.

Finite fields

The projective orthogonal group over a finite field is used in the construction of a family of finite simple groups of Lie type, namely the Chevalley groups of type Dn. The orthogonal group over a finite field, O(n,q) is not simple, since it has SO as a subgroup and a non-trivial center ({±I}) (hence PO as quotient). These are both fixed by passing to PSO, but PSO itself is not in general simple, and instead one must use a subgroup (which may be of index 1 or 2), defined by the spinor norm (in odd characteristic) or the quasideterminant (in even characteristic). [1] The quasideterminant can be defined as (−1)D, where D is the Dickson invariant (it is the determinant defined by the Dickson invariant), or in terms of the dimension of the fixed space.

Notes

  1. A quadratic space is a vector space V together with a quadratic form Q; the Q is dropped from notation when it is clear.
  2. This product is an internal direct sum – a product of subgroups – not just an abstract external direct sum.
  3. The isomorphism/equality distinction in this equation is because the context is the 2-to-1 quotient map O → PO – PSO(2k+1) and PO(2k+1) are equal subsets of the target (namely, the whole space), hence the equality, while the induced map SO → PSO is an isomorphism but the two groups are subsets of different spaces, hence the isomorphism rather than an equality. See ( Conway & Smith 2003 , p. 34 ) for an example of this distinction being made.

See also

Related Research Articles

<span class="mw-page-title-main">Clifford algebra</span> Algebra based on a vector space with a quadratic form

In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra. As K-algebras, they generalize the real numbers, complex numbers, quaternions and several other hypercomplex number systems. The theory of Clifford algebras is intimately connected with the theory of quadratic forms and orthogonal transformations. Clifford algebras have important applications in a variety of fields including geometry, theoretical physics and digital image processing. They are named after the English mathematician William Kingdon Clifford.

<span class="mw-page-title-main">Dihedral group</span> Group of symmetries of a regular polygon

In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry.

<span class="mw-page-title-main">Orthogonal group</span> Type of group in mathematics

In mathematics, the orthogonal group in dimension n, denoted O(n), is the group of distance-preserving transformations of a Euclidean space of dimension n that preserve a fixed point, where the group operation is given by composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of n×n orthogonal matrices, where the group operation is given by matrix multiplication. The orthogonal group is an algebraic group and a Lie group. It is compact.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

<span class="mw-page-title-main">Unitary group</span> Group of unitary matrices

In mathematics, the unitary group of degree n, denoted U(n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL(n, C). Hyperorthogonal group is an archaic name for the unitary group, especially over finite fields. For the group of unitary matrices with determinant 1, see Special unitary group.

<span class="mw-page-title-main">Lorentz group</span> Lie group of Lorentz transformations

In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">Representation of a Lie group</span> Group representation

In mathematics and theoretical physics, a representation of a Lie group is a linear action of a Lie group on a vector space. Equivalently, a representation is a smooth homomorphism of the group into the group of invertible operators on the vector space. Representations play an important role in the study of continuous symmetry. A great deal is known about such representations, a basic tool in their study being the use of the corresponding 'infinitesimal' representations of Lie algebras.

<span class="mw-page-title-main">Homogeneous space</span> Topological space in group theory

In mathematics, particularly in the theories of Lie groups, algebraic groups and topological groups, a homogeneous space for a group G is a non-empty manifold or topological space X on which G acts transitively. The elements of G are called the symmetries of X. A special case of this is when the group G in question is the automorphism group of the space X – here "automorphism group" can mean isometry group, diffeomorphism group, or homeomorphism group. In this case, X is homogeneous if intuitively X looks locally the same at each point, either in the sense of isometry, diffeomorphism, or homeomorphism (topology). Some authors insist that the action of G be faithful, although the present article does not. Thus there is a group action of G on X which can be thought of as preserving some "geometric structure" on X, and making X into a single G-orbit.

<span class="mw-page-title-main">Projective linear group</span>

In mathematics, especially in the group theoretic area of algebra, the projective linear group is the induced action of the general linear group of a vector space V on the associated projective space P(V). Explicitly, the projective linear group is the quotient group

<span class="mw-page-title-main">Spin group</span> Double cover Lie group of the special orthogonal group

In mathematics the spin group Spin(n) is the double cover of the special orthogonal group SO(n) = SO(n, R), such that there exists a short exact sequence of Lie groups

<span class="mw-page-title-main">Holonomy</span> Concept in differential geometry

In differential geometry, the holonomy of a connection on a smooth manifold is a general geometrical consequence of the curvature of the connection measuring the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. For flat connections, the associated holonomy is a type of monodromy and is an inherently global notion. For curved connections, holonomy has nontrivial local and global features.

In group theory, restriction forms a representation of a subgroup using a known representation of the whole group. Restriction is a fundamental construction in representation theory of groups. Often the restricted representation is simpler to understand. Rules for decomposing the restriction of an irreducible representation into irreducible representations of the subgroup are called branching rules, and have important applications in physics. For example, in case of explicit symmetry breaking, the symmetry group of the problem is reduced from the whole group to one of its subgroups. In quantum mechanics, this reduction in symmetry appears as a splitting of degenerate energy levels into multiplets, as in the Stark or Zeeman effect.

In mathematics, real projective space, or RPn or , is the topological space of lines passing through the origin 0 in Rn+1. It is a compact, smooth manifold of dimension n, and is a special case Gr(1, Rn+1) of a Grassmannian space.

In mathematics, the pin group is a certain subgroup of the Clifford algebra associated to a quadratic space. It maps 2-to-1 to the orthogonal group, just as the spin group maps 2-to-1 to the special orthogonal group.

In differential geometry, a spin structure on an orientable Riemannian manifold (M, g) allows one to define associated spinor bundles, giving rise to the notion of a spinor in differential geometry.

In mathematics, the projective unitary groupPU(n) is the quotient of the unitary group U(n) by the right multiplication of its center, U(1), embedded as scalars. Abstractly, it is the holomorphic isometry group of complex projective space, just as the projective orthogonal group is the isometry group of real projective space.

<span class="mw-page-title-main">Hyperboloid model</span> Model of n-dimensional hyperbolic geometry

In geometry, the hyperboloid model, also known as the Minkowski model after Hermann Minkowski, is a model of n-dimensional hyperbolic geometry in which points are represented by points on the forward sheet S+ of a two-sheeted hyperboloid in (n+1)-dimensional Minkowski space or by the displacement vectors from the origin to those points, and m-planes are represented by the intersections of (m+1)-planes passing through the origin in Minkowski space with S+ or by wedge products of m vectors. Hyperbolic space is embedded isometrically in Minkowski space; that is, the hyperbolic distance function is inherited from Minkowski space, analogous to the way spherical distance is inherited from Euclidean distance when the n-sphere is embedded in (n+1)-dimensional Euclidean space.

<span class="mw-page-title-main">Point reflection</span> Geometric symmetry operation

In geometry, a point reflection is a type of isometry of Euclidean space. An object that is invariant under a point reflection is said to possess point symmetry; if it is invariant under point reflection through its center, it is said to possess central symmetry or to be centrally symmetric.

In geometry, a (globally) projective polyhedron is a tessellation of the real projective plane. These are projective analogs of spherical polyhedra – tessellations of the sphere – and toroidal polyhedra – tessellations of the toroids.

<span class="mw-page-title-main">Quadric (algebraic geometry)</span>

In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space. An example is the quadric surface

References