Propane torch

Last updated
Handheld propane blowlamp (UK)/blowtorch (US) Aa propaneblowlamp 00.jpg
Handheld propane blowlamp (UK)/blowtorch (US)
Large propane torch used for construction Construction of a crosswalk using polymer modified cement slurry.jpg
Large propane torch used for construction

A propane torch is a tool normally used for the application of flame or heat which uses propane, a hydrocarbon gas, for its fuel and ambient air as its combustion medium. Propane is one of a group of by-products of the natural gas and petroleum industries known as liquefied petroleum gas (LPG). Propane and other fuel torches are most commonly used in the manufacturing, construction and metal-working industries. [1]

Contents

Fuels

Propane is often the fuel of choice because of its low price, ease of storage and availability, hence the name "propane torch". The gasses MAPP gas and Map-pro are similar to propane, but burn hotter. They are usually found in a yellow canister, as opposed to propane's blue, black, or green. Alternative fuel gases can be harder to store and more dangerous for the user. For example, acetylene needs a porous material mixed with acetone in the tank for safety reasons and cannot be used above a certain pressure and withdrawal rate. Natural gas is a common fuel for household cooking and heating but cannot be stored in liquid form without cryogenic refrigeration. [2]

Mechanism

Small air-only torches normally use the Venturi effect to create a pressure differential which causes air to enter the gas stream through precisely sized inlet holes or intakes, similar to how a car's carburetor works. The fuel and air mix sufficiently, but imperfectly, in the burner's tube before the flame front is reached. The flame also receives some further oxygen from the air surrounding it. Oxygen-fed torches use the high pressure of the stored oxygen to push the oxygen into a common tube with the fuel. [3] [4]

Uses

Handheld propane torch being used to solder copper pipes for residential water mains Propane torch soldering copper pipe.jpg
Handheld propane torch being used to solder copper pipes for residential water mains

Propane torches are frequently employed to solder copper water pipes. They can also be used for some low temperature welding applications, as well as for brazing dissimilar metals together. They can also be used for annealing, for heating metals up in order to bend them more easily, bending glass, and for doing flame tests. [5] [6]

Complete and incomplete combustion

With oxygen/propane torches, the air/fuel ratio can be much lower. The stoichiometric equation for complete combustion of propane with 100% oxygen is: [7]

C3H8 + 5 (O2) → 4 (H2O) + 3 (CO2)

In this case, the only products are CO2 and water. The balanced equation shows to use 1  mole of propane for every 5 moles of oxygen.

With air/fuel torches, since air contains about 21% oxygen, a very large ratio of air to fuel must be used to obtain the maximum flame temperature with air. If the propane does not receive enough oxygen, some of the carbon from the propane is left unburned. An example of incomplete combustion that uses 1 mole of propane for every 4 moles of oxygen: [7]

C3H8 + 4 (O2) → 4 (H2O) + 2 (CO2) + 1 C

The extra carbon product will cause soot to form, and the less oxygen used, the more soot will form. There are other unbalanced ratios where incomplete combustion products such as carbon monoxide (CO) are formed, such as: [7]

6 (C3H8) + 29 (O2) → 24 (H2O) + 16 (CO2) + 2 CO

Flame temperature

An air-fed torch's maximum adiabatic flame temperature is assumed to be around 2,000 °C (3,600 °F). However, a typical primary flame will only achieve 1,100 °C (2,000 °F) to 1,250 °C (2,250 °F). Oxygen-fed torches can be much hotter at up to 2,550 °C (4,600 °F). [8]

See also

Related Research Articles

<span class="mw-page-title-main">Combustion</span> Chemical reaction between a fuel and oxygen

Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combustion does not always result in fire, because a flame is only visible when substances undergoing combustion vaporize, but when it does, a flame is a characteristic indicator of the reaction. While activation energy must be supplied to initiate combustion, the heat from a flame may provide enough energy to make the reaction self-sustaining. The study of combustion is known as combustion science.

<span class="mw-page-title-main">Carbon monoxide</span> Colourless, odourless, tasteless and toxic gas

Carbon monoxide is a poisonous, flammable gas that is colorless, odorless, tasteless, and slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simplest carbon oxide. In coordination complexes, the carbon monoxide ligand is called carbonyl. It is a key ingredient in many processes in industrial chemistry.

<span class="mw-page-title-main">Electrochemistry</span> Branch of chemistry

Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference and identifiable chemical change. These reactions involve electrons moving via an electronically-conducting phase between electrodes separated by an ionically conducting and electronically insulating electrolyte.

<span class="mw-page-title-main">Oxide</span> Chemical compound where oxygen atoms are combined with atoms of other elements

An oxide is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– ion with oxygen in the oxidation state of −2. Most of the Earth's crust consists of oxides. Even materials considered pure elements often develop an oxide coating. For example, aluminium foil develops a thin skin of Al2O3 that protects the foil from further oxidation.

<span class="mw-page-title-main">Propane</span> Hydrocarbon compound

Propane is a three-carbon alkane with the molecular formula C3H8. It is a gas at standard temperature and pressure, but compressible to a transportable liquid. A by-product of natural gas processing and petroleum refining, it is often a constituent of liquefied petroleum gas (LPG), which is commonly used as a fuel in domestic and industrial applications and in low-emissions public transportation; other constituents of LPG may include propylene, butane, butylene, butadiene, and isobutylene. Discovered in 1857 by the French chemist Marcellin Berthelot, it became commercially available in the US by 1911. Propane has lower volumetric energy density than gasoline or coal, but has higher gravimetric energy density than them and burns more cleanly.

<span class="mw-page-title-main">Stoichiometry</span> Calculation of relative weights of reactants and products in chemical reactions

Stoichiometry is the relationship between the weights of reactants and products before, during, and following chemical reactions.

<span class="mw-page-title-main">Producer gas</span> Obsolete form of gas fuel

Producer gas is fuel gas that is manufactured by blowing through a coke or coal fire with air and steam simultaneously. It mainly consists of carbon monoxide (CO), hydrogen (H2), as well as substantial amounts of nitrogen (N2). The caloric value of the producer gas is low (mainly because of its high nitrogen content), and the technology is obsolete. Improvements over producer gas, also obsolete, include water gas where the solid fuel is treated intermittently with air and steam and, far more efficiently synthesis gas where the solid fuel is replaced with methane.

Nitromethane, sometimes shortened to simply "nitro", is an organic compound with the chemical formula CH
3
NO
2
. It is the simplest organic nitro compound. It is a polar liquid commonly used as a solvent in a variety of industrial applications such as in extractions, as a reaction medium, and as a cleaning solvent. As an intermediate in organic synthesis, it is used widely in the manufacture of pesticides, explosives, fibers, and coatings. Nitromethane is used as a fuel additive in various motorsports and hobbies, e.g. Top Fuel drag racing and miniature internal combustion engines in radio control, control line and free flight model aircraft.

The heating value of a substance, usually a fuel or food, is the amount of heat released during the combustion of a specified amount of it.

<span class="mw-page-title-main">Copper(II) oxide</span> Chemical compound – an oxide of copper with formula CuO

Copper(II) oxide or cupric oxide is an inorganic compound with the formula CuO. A black solid, it is one of the two stable oxides of copper, the other being Cu2O or copper(I) oxide (cuprous oxide). As a mineral, it is known as tenorite. It is a product of copper mining and the precursor to many other copper-containing products and chemical compounds.

<span class="mw-page-title-main">MAPP gas</span> Fuel gas based on a stabilized mixture of methylacetylene and propadiene

MAPP gas was a trademarked name, belonging to The Linde Group, a division of the former global chemical giant Union Carbide, for a fuel gas based on a stabilized mixture of methylacetylene (propyne), propadiene and propane. The name comes from the original chemical composition, methylacetylene-propadiene propane. "MAPP gas" is also widely used as a generic name for UN 1060 stabilised methylacetylene-propadiene.

Air–fuel ratio (AFR) is the mass ratio of air to a solid, liquid, or gaseous fuel present in a combustion process. The combustion may take place in a controlled manner such as in an internal combustion engine or industrial furnace, or may result in an explosion ,The air–fuel ratio determines whether a mixture is combustible at all, how much energy is being released, and how much unwanted pollutants are produced in the reaction. Typically a range of fuel to air ratios exists, outside of which ignition will not occur. These are known as the lower and upper explosive limits.

<span class="mw-page-title-main">Oxyhydrogen</span> Explosive mixture of hydrogen and oxygen gases

Oxyhydrogen is a mixture of hydrogen (H2) and oxygen (O2) gases. This gaseous mixture is used for torches to process refractory materials and was the first gaseous mixture used for welding. Theoretically, a ratio of 2:1 hydrogen:oxygen is enough to achieve maximum efficiency; in practice a ratio 4:1 or 5:1 is needed to avoid an oxidizing flame.

Water gas is a kind of fuel gas, a mixture of carbon monoxide and hydrogen. It is produced by "alternately hot blowing a fuel layer [coke] with air and gasifying it with steam". The caloric yield of the fuel produced by this method is about 10% of the yield from a modern syngas plant. The coke needed to produce water gas also costs significantly more than the precursors for syngas, making water gas technology an even less attractive business proposition.

<span class="mw-page-title-main">Gas burner</span> Device used to make fire from combusting fuel and oxidizer gases

A gas burner is a device that produces a non-controlled flame by mixing a fuel gas such as acetylene, natural gas, or propane with an oxidizer such as the ambient air or supplied oxygen, and allowing for ignition and combustion.

<span class="mw-page-title-main">Oxy-fuel combustion process</span> Burning of fuel with pure oxygen

Oxy-fuel combustion is the process of burning a fuel using pure oxygen, or a mixture of oxygen and recirculated flue gas, instead of air. Since the nitrogen component of air is not heated, fuel consumption is reduced, and higher flame temperatures are possible. Historically, the primary use of oxy-fuel combustion has been in welding and cutting of metals, especially steel, since oxy-fuel allows for higher flame temperatures than can be achieved with an air-fuel flame. It has also received a lot of attention in recent decades as a potential carbon capture and storage technology.

<span class="mw-page-title-main">Oxy-fuel welding and cutting</span> Metalworking technique using a fuel and oxygen

Oxy-fuel welding and oxy-fuel cutting are processes that use fuel gases and oxygen to weld or cut metals. French engineers Edmond Fouché and Charles Picard became the first to develop oxygen-acetylene welding in 1903. Pure oxygen, instead of air, is used to increase the flame temperature to allow localized melting of the workpiece material in a room environment.

<span class="mw-page-title-main">Butane</span> Organic compound

Butane or n-butane is an alkane with the formula C4H10. Butane is a highly flammable, colorless, easily liquefied gas that quickly vaporizes at room temperature and pressure. The name butane comes from the root but- (from butyric acid, named after the Greek word for butter) and the suffix -ane. It was discovered in crude petroleum in 1864 by Edmund Ronalds, who was the first to describe its properties, and commercialized by Walter O. Snelling in the early 1910s.

<span class="mw-page-title-main">Blowtorch</span> Fuel-burning tool for applying flame and heat for various applications

A blowtorch, also referred to as a blowlamp, is an ambient air fuel-burning tool used for applying flame and heat to various applications, usually in metalworking.

Flame treatment is the application of a gas flame to the surface of a material to improve adhesion.

References

  1. Bill Johnson; Kevin Standiford (28 August 2008). Practical Heating Technology. Cengage Learning. pp. 112–. ISBN   978-1-4180-8039-6.
  2. Sara McAllister; Jyh-Yuan Chen; A. Carlos Fernandez-Pello (10 May 2011). Fundamentals of Combustion Processes. Springer Science & Business Media. pp. 49–. ISBN   978-1-4419-7943-8.
  3. Editors of Creative Publishing (1 July 2008). Black & Decker The Complete Guide to Plumbing: Expanded 4th Edition - Modern Materials and Current Codes - All New Guide to Working with Gas Pipe. Creative Publishing international. pp. 276–. ISBN   978-1-61673-362-9.
  4. Eugene L. Keating (9 March 2007). Applied Combustion. CRC Press. pp. 64–. ISBN   978-1-4200-1748-9.
  5. Trellis Craft: How to Make Your Own Copper Pipe Garden Ornaments. Castcraft. 2003. pp. 11–. ISBN   978-0-9727691-0-5.
  6. Tom Brownell (2009). How to Restore Your Collector Car. Motorbooks. pp. 134–. ISBN   978-1-61673-092-5.
  7. 1 2 3 Frederick A. Bettelheim; William H. Brown; Mary K. Campbell; Shawn O. Farrell (5 January 2009). Introduction to General, Organic and Biochemistry. Cengage Learning. pp. 114–. ISBN   978-0-495-39112-8.
  8. Gas Burners for Forges, Furnaces, & Kilns. Skipjack Press, Inc. 2004. pp. 10–. ISBN   978-1-879535-20-6.

Bibliography