Prymnesin-1

Last updated
Prymnesin-1
Prymnesin 1.svg
Names
IUPAC name
77‐Amino‐6,35,90‐trichloro‐17,21:22,26:25,29:30,34:33,37:38,42:41,45:46,50:49,53:54,58:57,62:61,65:64,68:67,71‐tetradecaepoxy‐52‐methyl 14‐(5‐hydroxymethyl‐3,4‐dihydroxy‐2‐oxolanyloxy)‐9‐[5‐(1,2‐dihydroxyethyl)‐3,4‐dihydroxy‐2‐oxolanyloxy]‐13‐(3,4,5‐trihydroxytetrahydro‐2H‐pyran‐2‐yloxy)‐72,74,79,81,89‐nonacontapentene‐1,3,83,87‐tetryne‐7,8,10,11,15,18,19,20,23,24,31,39,43,59‐tetradecol
Other names
PRM1 [1]
Identifiers
3D model (JSmol)
PubChem CID
  • C#CC#CC[C@H](Cl)C(O)C(O)C(O[C@@H]1O[C@]([C@@H](CO)O)([H])[C@H](O)[C@H]1O)C(O)C(O)CC(O[C@H]2[C@H](O)[C@@H](O)[C@@H](O)CO2)C(O[C@@H]3[C@H](O)[C@H](O)[C@@H](CO)O3)C(O)C[C@@]([C@@H](O)[C@@H](O)[C@@H]4O)([H])O[C@@]4([H])[C@@]5([H])O[C@]6([H])[C@@](O[C@]([C@]7([H])[C@H](O)C[C@](O[C@]([C@@]8([H])O[C@]([C@@H](O)C[C@@]([C@]9([H])O[C@@](C[C@@H](C)[C@]([C@@]%10([H])O[C@@]%11([H])[C@@H](O)C[C@@]%12([H])O[C@@]%13([H])C[C@@]%14([H])O[C@@]([H])(/C=C/C=C/C[C@@H](N)C/C=C/C=C/C#CCCC#C/C=C/Cl)CC[C@]%14([H])O[C@]%13([H])C[C@]%12([H])O[C@]%11([H])CC%10)([H])O%15)([H])[C@]%15([H])CC9)([H])O%16)([H])[C@@]%16([H])C[C@@H]8O)([H])C[C@@H]%17Cl)([H])[C@@]%17([H])O7)([H])CC6)([H])[C@@H](O)[C@H]5O
Properties
C107H154Cl3NO44
Molar mass 2264.72 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Prymnesin-1 is a chemical with the molecular formula C
107
H
154
Cl
3
NO
44
. It is a member of the prymnesins, a class of hemolytic phycotoxins made by the alga Prymnesium parvum . [1] [2] It is known to be toxic to fish, causing mass fish deaths around the world, including in Texas and England, or in 2022 in the border region of Germany and Poland (Oder).

Contents

Structures

Prymnesin-1 is formed of a large polyether polycyclic core with several conjugate double and triple bonds, chlorine and nitrogen heteroatoms and O-linked sugar moieties including α-D-ribofuranose, α-L-arabinopyranose, and β-D-galactofuranose, unlike the single linked α-L-xylofuranose of prymnesin-2. [1] [3] There are three forms of prymnesin known, prymnesin 1 and 2, differing in their glycosylation, and prymnesin B1 [4] differing in backbone.

See also

Related Research Articles

<span class="mw-page-title-main">Tetrodotoxin</span> Neurotoxin

Tetrodotoxin (TTX) is a potent neurotoxin. Its name derives from Tetraodontiformes, an order that includes pufferfish, porcupinefish, ocean sunfish, and triggerfish; several of these species carry the toxin. Although tetrodotoxin was discovered in these fish and found in several other animals, it is actually produced by certain infecting or symbiotic bacteria like Pseudoalteromonas, Pseudomonas, and Vibrio as well as other species found in animals.

The Ferrier rearrangement is an organic reaction that involves a nucleophilic substitution reaction combined with an allylic shift in a glycal. It was discovered by the carbohydrate chemist Robert J. Ferrier.

<span class="mw-page-title-main">Palytoxin</span> Chemical compound

Palytoxin, PTX or PLTX is an intense vasoconstrictor, and is considered to be one of the most poisonous non-protein substances known, second only to maitotoxin in terms of toxicity in mice.

Okadaic acid, C44H68O13, is a toxin produced by several species of dinoflagellates, and is known to accumulate in both marine sponges and shellfish. One of the primary causes of diarrhetic shellfish poisoning, okadaic acid is a potent inhibitor of specific protein phosphatases and is known to have a variety of negative effects on cells. A polyketide, polyether derivative of a C38 fatty acid, okadaic acid and other members of its family have shined light upon many biological processes both with respect to dinoflagellete polyketide synthesis as well as the role of protein phosphatases in cell growth.

<span class="mw-page-title-main">Maitotoxin</span> Chemical compound

Maitotoxin is an extremely powerful biotoxin produced by Gambierdiscus toxicus, a dinoflagellate species. Maitotoxin has been shown to be more than one hundred thousand times more potent than VX nerve agent. Maitotoxin is so potent that it has been demonstrated that an intraperitoneal injection of 130 ng/kg was lethal in mice. Maitotoxin was named from the ciguateric fish Ctenochaetus striatus—called "maito" in Tahiti—from which maitotoxin was isolated for the first time. It was later shown that maitotoxin is actually produced by the dinoflagellate Gambierdiscus toxicus.

Prymnesium parvum is a species of haptophytes. The species is of concern because of its ability to produce the phycotoxin prymnesin. It is a flagellated alga that is normally found suspended in the water column. It was first identified in North America in 1985, but it is not known if it was introduced artificially or missed in previous surveys. Toxin production mainly kills fish and appears to have little effect on cattle or humans. This distinguishes it from a red tide, which is an algal bloom whose toxins lead to harmful effects in people. Although no harmful effects are known, it is recommended not to consume dead or dying fish exposed to a P. parvum bloom.

<span class="mw-page-title-main">Halomon</span> Chemical compound

Halomon is a polyhalogenated monoterpene first isolated from the marine red algae Portieria hornemannii. Halomon has attracted research interest because of its promising profile of selective cytotoxicity that suggests its potential use as an antitumor agent.

<span class="mw-page-title-main">Brevetoxin</span> Class of chemical compounds produced naturally

Brevetoxin (PbTx), or brevetoxins, are a suite of cyclic polyether compounds produced naturally by a species of dinoflagellate known as Karenia brevis. Brevetoxins are neurotoxins that bind to voltage-gated sodium channels in nerve cells, leading to disruption of normal neurological processes and causing the illness clinically described as neurotoxic shellfish poisoning (NSP).

Pahutoxin, formerly called ostracitoxin, is a neurotoxin present in the mucous secretions of boxfish (Ostraciidae) skin, while under stress. It is an ichthyotoxic, hemolytic, nonpeptide toxin. It is heat-stable and non-dialyzable, that is, foamed in aqueous solutions, and is toxic to various biological systems. It is unique among known fish poisons. It is toxic to other boxfish as well and looks like red tide and sea cucumber toxins in general properties. Although it is not recommended, it is a growing trend to keep boxfish in a home aquarium. Members of the family Ostraciidae secrete an ichthyotoxic mucus from their skin when stressed or disturbed.

<span class="mw-page-title-main">Epiboxidine</span> Chemical compound

Epiboxidine is a chemical compound which acts as a partial agonist at neural nicotinic acetylcholine receptors, binding to both the α3β4 and the α4β2 subtypes. It was developed as a less toxic analogue of the potent frog-derived alkaloid epibatidine, which is around 200 times stronger than morphine as an analgesic but produces extremely dangerous toxic nicotinic side effects.

<i>Gambierdiscus toxicus</i> Species of protist

Gambierdiscus toxicus is a species of photosynthetic unicellular eukaryote belonging to the Alveolata, part of the SAR supergroup. It is a dinoflagellate which can cause the foodborne illness ciguatera, and is known to produce several natural polyethers including ciguatoxin, maitotoxin, gambieric acid, and gambierol. The species was discovered attached to the surface of brown macroalgae.

<span class="mw-page-title-main">Halichondrin B</span> Chemical compound

Halichondrin B is a polyether macrolide originally isolated from the marine sponge Halichondria okadai by Hirata and Uemura in 1986. In the same report, these authors also reported the exquisite anticancer activity of halichondrin B against murine cancer cells both in culture and in in vivo studies. Halichondrin B was highly prioritized for development as a novel anticancer therapeutic by the United States National Cancer Institute and, in 1991, was the original test case for identification of mechanism of action by NCI's then-brand-new "60-cell line screen" The complete chemical synthesis of halichondrin B was achieved by Yoshito Kishi and colleagues at Harvard University in 1992, an achievement that ultimately enabled the discovery and development of the structurally simplified and pharmaceutically optimized analog eribulin. Eribulin was approved by the U.S. Food and Drug Administration on November 15, 2010, to treat patients with metastatic breast cancer who have received at least two prior chemotherapy regimens for late-stage disease, including both anthracycline- and taxane-based chemotherapies. Eribulin is marketed by Eisai Co. under the tradename Halaven.

<span class="mw-page-title-main">Yessotoxin</span> Chemical compound

Yessotoxins are a group of lipophilic, sulfur bearing polyether toxins that are related to ciguatoxins. They are produced by a variety of dinoflagellates, most notably Lingulodinium polyedrum and Gonyaulax spinifera.

Ichthyotoxins are compounds which are either toxic to fish, or are toxins produced by fish. The former include the algae-produced euglenophycin and prymnesins, which can cause large-scale fish deaths. The latter includes ostracitoxin, produced by boxfish. Many toxin-producing algal species can be found both in marine and fresh water environments when the algae are in bloom. Ichthyotoxic poisoning in humans can cause symptoms ranging in severity dependent on how much toxin was consumed. The symptoms of an ichthyotoxin poisoning from fish venoms can include headache, vomiting, diarrhea, dizziness, and drop in blood pressure.

<span class="mw-page-title-main">Azaspiracid</span> Chemical compound

Azaspiracids (AZA) are a group of polycyclic ether marine algal toxins produced by the small dinoflagellate Azadinium spinosum that can accumulate in shellfish and thereby cause illness in humans.

<span class="mw-page-title-main">Antillatoxin</span> Chemical compound

Antillatoxin (ATX) is a potent lipopeptide neurotoxin produced by the marine cyanobacterium Lyngbya majuscula. ATX activates voltage-gated sodium channels, which can cause cell depolarisation, NMDA-receptor overactivity, excess calcium influx and neuronal necrosis.

Gambierol is a marine polycyclic ether toxin which is produced by the dinoflagellate Gambierdiscus toxicus. Gambierol is collected from the sea at the Rangiroa Peninsula in French Polynesia. The toxins are accumulated in fish through the food chain and can therefore cause human intoxication. The symptoms of the toxicity resemble those of ciguatoxins, which are extremely potent neurotoxins that bind to voltage-sensitive sodium channels and alter their function. These ciguatoxins cause ciguatera fish poisoning. Because of the resemblance, there is a possibility that gambierol is also responsible for ciguatera fish poisoning. Because the natural source of gambierol is limited, biological studies are hampered. Therefore, chemical synthesis is required.

Prymnesin-2 is an organic compound that is secreted by the haptophyte Prymnesium parvum. It belongs to the prymnesin family and has potent hemolytic and ichthyotoxic properties. In a purified form it appears as a pale yellow solid. P. parvum is responsible for red harmful algal blooms worldwide, causing massive fish killings. When these algal blooms occur, this compound poses a threat to the local fishing industry. This is especially true for brackish water, as the compound can reach critical concentrations more easily.

<span class="mw-page-title-main">Prymnesin-B1</span> Chemical compound

Prymnesin-B1 is a chemical with the molecular formula C
91
H
132
ClNO
34
. It is a member of the prymnesins, a class of ladder-frame polyether phycotoxins made by the alga Prymnesium parvum. It is known to be toxic to fish. It is a so called "Type-B" prymnesin, which differ in the number of backbone cycles when compared to Type-A prymnesins like prymnesin-2.

Grammistins are peptide toxins synthesised by glands in the skin of soapfishes of the tribes Grammistini and Diploprionini which are both classified within the grouper subfamily Epinephelinae, a part of the family Serranidae. Grammistin has a hemolytic and ichthyotoxic action. The grammistins have secondary structures and biological effects comparable to other classes of peptide toxins, melittin from the bee stings and pardaxins which are secreted in the skin of two sole species. A similar toxin has been found to be secreted in the skin of some clingfishes.

References

  1. 1 2 3 Igarashi, Tomoji; Satake, Masayuki; Yasumoto, Takeshi (1999). "Structures and Partial Stereochemical Assignments for Prymnesin-1 and Prymnesin-2: Potent Hemolytic and Ichthyotoxic Glycosides Isolated from the Red Tide Alga Prymnesium parvum". J. Am. Chem. Soc. 121 (37): 8499–8511. doi:10.1021/ja991740e.
  2. Morohashi, Akio; Satake, Masayuki; Oshima, Yasukatsu; Igarashi, Tomoji; Yasumoto, Takeshi (2001). "Absolute configuration at C14 and C85 in prymnesin-2, a potent hemolytic and ichthyotoxic glycoside isolated from the red tide alga Prymnesium parvum". Chirality. 13 (9): 601–605. doi:10.1002/chir.1184. PMID   11579456.
  3. Manning SR, La Claire JW (2010). "Prymnesins: toxic metabolites of the golden alga, Prymnesium parvum carter (Haptophyta)". Marine Drugs. 8 (3): 678–704. doi: 10.3390/md8030678 . PMC   2857367 . PMID   20411121.
  4. Rasmussen, Silas Anselm; Meier, Sebastian; Andersen, Nikolaj Gedsted; Blossom, Hannah Eva; Duus, Jens Øllgaard; Nielsen, Kristian Fog; Hansen, Per Juel; Larsen, Thomas Ostenfeld (2016). "Chemodiversity of Ladder-Frame Prymnesin Polyethers in Prymnesium parvum". J. Nat. Prod. 79 (9): 2250–2256. doi: 10.1021/acs.jnatprod.6b00345 . PMID   27550620.