In constructive mathematics, pseudo-order is a name given to certain binary relations appropriate for modeling continuous orderings.
In classical mathematics, its axioms constitute a formulation of a strict total order (also called linear order), which in that context can also be defined in other, equivalent ways.
The constructive theory of the real numbers is the prototypical example where the pseudo-order formulation becomes crucial. A real number is less than another if there exists (one can construct) a rational number greater than the former and less than the latter. In other words, here x < y holds if there exists a rational number z such that x < z < y. Notably, for the continuum in a constructive context, the usual trichotomy law does not hold, i.e. it is not automatically provable. The axioms in the characterization of orders like this are thus weaker (when working using just constructive logic) than alternative axioms of a strict total order, which are often employed in the classical context.
A pseudo-order is a binary relation satisfying the three conditions:
There are common constructive reformulations making use of contrapositions and the valid equivalences as well as . The negation of the pseudo-order of two elements defines a reflexive partial order . In these terms, the first condition reads
and it really just expresses the asymmetry of . It implies irreflexivity, as familiar from the classical theory.
The second condition exactly expresses the anti-symmetry of the associated partial order,
With the above two reformulations, the negation signs may be hidden in the definition of a pseudo-order.
A natural apartness relation on a pseudo-ordered set is given by . With it, the second condition exactly states that this relation is tight,
Together with the first axiom, this means equality can be expressed as negation of apartness. Note that the negation of equality is in general merely the double-negation of apartness.
Now the disjunctive syllogism may be expressed as . Such a logical implication can classically be reversed, and then this condition exactly expresses trichotomy. As such, it is also a formulation of connectedness.
The non-contradiction principle for the partial order states that or equivalently , for all elements. Constructively, the validity of the double-negation exactly means that there cannot be a refutation of any of the disjunctions in the classical claim , whether or not this proposition represents a decidable problem.
Using the asymmetry condition, the above also implies , the double-negated strong connectedness. In a classical logic context, "" thus constitutes a (non-strict) total order.
The contrapositive of the third condition exactly expresses that the associated relation (the partial order) is transitive. So that property is called co-transitivity. Using the asymmetry condition, one quickly derives the theorem that a pseudo-order is actually transitive as well. Transitivity is common axiom in the classical definition of a linear order.
The condition also called is comparison (as well as weak linearity): For any nontrivial interval given by some and some above it, any third element is either above the lower bound or below the upper bound. Since this is an implication of a disjunction, it ties to the trichotomy law as well. And indeed, having a pseudo-order on a Dedekind-MacNeille-complete poset implies the principle of excluded middle. This impacts the discussion of completeness in the constructive theory of the real numbners.
This section assumes classical logic. At least then, following properties can be proven:
If R is a co-transitive relation, then
Sufficient conditions for a co-transitive relation R to be transitive also are:
A semi-connex relation R is also co-transitive if it is symmetric, left or right Euclidean, transitive, or quasitransitive. If incomparability w.r.t. R is a transitive relation, then R is co-transitive if it is symmetric, left or right Euclidean, or transitive.
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word ἀξίωμα (axíōma), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'.
First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.
The proof of Gödel's completeness theorem given by Kurt Gödel in his doctoral dissertation of 1929 is not easy to read today; it uses concepts and formalisms that are no longer used and terminology that is often obscure. The version given below attempts to represent all the steps in the proof and all the important ideas faithfully, while restating the proof in the modern language of mathematical logic. This outline should not be considered a rigorous proof of the theorem.
Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.
Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic.
In mathematics, constructive analysis is mathematical analysis done according to some principles of constructive mathematics.
In propositional logic, double negation is the theorem that states that "If a statement is true, then it is not the case that the statement is not true." This is expressed by saying that a proposition A is logically equivalent to not (not-A), or by the formula A ≡ ~(~A) where the sign ≡ expresses logical equivalence and the sign ~ expresses negation.
A formula of the predicate calculus is in prenex normal form (PNF) if it is written as a string of quantifiers and bound variables, called the prefix, followed by a quantifier-free part, called the matrix. Together with the normal forms in propositional logic, it provides a canonical normal form useful in automated theorem proving.
In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel–choice set theory (ZFC). NBG introduces the notion of class, which is a collection of sets defined by a formula whose quantifiers range only over sets. NBG can define classes that are larger than sets, such as the class of all sets and the class of all ordinals. Morse–Kelley set theory (MK) allows classes to be defined by formulas whose quantifiers range over classes. NBG is finitely axiomatizable, while ZFC and MK are not.
Tarski's axioms are an axiom system for Euclidean geometry, specifically for that portion of Euclidean geometry that is formulable in first-order logic with identity. As such, it does not require an underlying set theory. The only primitive objects of the system are "points" and the only primitive predicates are "betweenness" and "congruence". The system contains infinitely many axioms.
In set theory, -induction, also called epsilon-induction or set-induction, is a principle that can be used to prove that all sets satisfy a given property. Considered as an axiomatic principle, it is called the axiom schema of set induction.
In mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism. It is named after Arend Heyting, who first proposed it.
Axiomatic constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. The same first-order language with "" and "" of classical set theory is usually used, so this is not to be confused with a constructive types approach. On the other hand, some constructive theories are indeed motivated by their interpretability in type theories.
In mathematics, a set is inhabited if there exists an element .
In theoretical computer science, the modal μ-calculus is an extension of propositional modal logic by adding the least fixed point operator μ and the greatest fixed point operator ν, thus a fixed-point logic.
In logic, especially mathematical logic, a Hilbert system, sometimes called Hilbert calculus, Hilbert-style deductive system or Hilbert–Ackermann system, is a type of system of formal deduction attributed to Gottlob Frege and David Hilbert. These deductive systems are most often studied for first-order logic, but are of interest for other logics as well.
In mathematical logic, more specifically in the proof theory of first-order theories, extensions by definitions formalize the introduction of new symbols by means of a definition. For example, it is common in naive set theory to introduce a symbol for the set that has no member. In the formal setting of first-order theories, this can be done by adding to the theory a new constant and the new axiom , meaning "for all x, x is not a member of ". It can then be proved that doing so adds essentially nothing to the old theory, as should be expected from a definition. More precisely, the new theory is a conservative extension of the old one.
In constructive mathematics, Church's thesis is an axiom stating that all total functions are computable functions.
In mathematical logic, Rosser's trick is a method for proving a variant of Gödel's incompleteness theorems not relying on the assumption that the theory being considered is ω-consistent. This method was introduced by J. Barkley Rosser in 1936, as an improvement of Gödel's original proof of the incompleteness theorems that was published in 1931.
In set theory and mathematical logic, the Lévy hierarchy, introduced by Azriel Lévy in 1965, is a hierarchy of formulas in the formal language of the Zermelo–Fraenkel set theory, which is typically called just the language of set theory. This is analogous to the arithmetical hierarchy, which provides a similar classification for sentences of the language of arithmetic.