In constructive mathematics, an apartness relation is a constructive form of inequality, and is often taken to be more basic than equality.
An apartness relation is often written as (⧣ in unicode) to distinguish from the negation of equality (the denial inequality), which is weaker. In the literature, the symbol is found to be used for either of these.
A binary relation is an apartness relation if it satisfies: [1]
So an apartness relation is a symmetric irreflexive binary relation with the additional condition that if two elements are apart, then any other element is apart from at least one of them. This last property is often called co-transitivity or comparison.
The complement of an apartness relation is an equivalence relation, as the above three conditions become reflexivity, symmetry, and transitivity. If this equivalence relation is in fact equality, then the apartness relation is called tight. That is, is a tight apartness relation if it additionally satisfies:
In classical mathematics, it also follows that every apartness relation is the complement of an equivalence relation, and the only tight apartness relation on a given set is the complement of equality. So in that domain, the concept is not useful. In constructive mathematics, however, this is not the case.
The prototypical apartness relation is that of the real numbers: two real numbers are said to be apart if there exists (one can construct) a rational number between them. In other words, real numbers and are apart if there exists a rational number such that or The natural apartness relation of the real numbers is then the disjunction of its natural pseudo-order. The complex numbers, real vector spaces, and indeed any metric space then naturally inherit the apartness relation of the real numbers, even though they do not come equipped with any natural ordering.
If there is no rational number between two real numbers, then the two real numbers are equal. Classically, then, if two real numbers are not equal, one would conclude that there exists a rational number between them. However it does not follow that one can actually construct such a number. Thus to say two real numbers are apart is a stronger statement, constructively, than to say that they are not equal, and while equality of real numbers is definable in terms of their apartness, the apartness of real numbers cannot be defined in terms of their equality. For this reason, in constructive topology especially, the apartness relation over a set is often taken as primitive, and equality is a defined relation.
A set endowed with an apartness relation is known as a constructive setoid. A function between such setoids and may be called a morphism for and if the strong extensionality property holds
This ought to be compared with the extensionality property of functions, i.e. that functions preserve equality. Indeed, for the denial inequality defined in common set theory, the former represents the contrapositive of the latter.
In mathematics, a binary relation associates elements of one set, called the domain, with elements of another set, called the codomain. A binary relation over sets X and Y is a set of ordered pairs (x, y) consisting of elements x from X and y from Y. It is a generalization of the more widely understood idea of a unary function. It encodes the common concept of relation: an element x is related to an element y, if and only if the pair (x, y) belongs to the set of ordered pairs that defines the binary relation. A binary relation is the most studied special case n = 2 of an n-ary relation over sets X1, ..., Xn, which is a subset of the Cartesian product
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equality. Any number is equal to itself (reflexive). If , then (symmetric). If and , then (transitive).
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσοςisos "equal", and μορφήmorphe "form" or "shape".
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for expressing all mathematics.
In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. It is used most often to compare two numbers on the number line by their size. There are several different notations used to represent different kinds of inequalities:
In mathematics, equality is a relationship between two quantities or, more generally, two mathematical expressions, asserting that the quantities have the same value, or that the expressions represent the same mathematical object. Equality between A and B is written A = B, and pronounced "A equals B". The symbol "=" is called an "equals sign". Two objects that are not equal are said to be distinct.
In mathematics, a binary relation on a set is reflexive if it relates every element of to itself.
In mathematics, a binary relation R on a set X is transitive if, for all elements a, b, c in X, whenever R relates a to b and b to c, then R also relates a to c.
In mathematics, constructive analysis is mathematical analysis done according to some principles of constructive mathematics.
The ultraproduct is a mathematical construction that appears mainly in abstract algebra and mathematical logic, in particular in model theory and set theory. An ultraproduct is a quotient of the direct product of a family of structures. All factors need to have the same signature. The ultrapower is the special case of this construction in which all factors are equal.
In mathematics, there are several equivalent ways of defining the real numbers. One of them is that they form a complete ordered field that does not contain any smaller complete ordered field. Such a definition does not prove that such a complete ordered field exists, and the existence proof consists of constructing a mathematical structure that satisfies the definition.
In mathematics, especially order theory, a weak ordering is a mathematical formalization of the intuitive notion of a ranking of a set, some of whose members may be tied with each other. Weak orders are a generalization of totally ordered sets and are in turn generalized by (strictly) partially ordered sets and preorders.
In set theory, -induction, also called epsilon-induction or set-induction, is a principle that can be used to prove that all sets satisfy a given property. Considered as an axiomatic principle, it is called the axiom schema of set induction.
In mathematics, a partial equivalence relation is a homogeneous binary relation that is symmetric and transitive. If the relation is also reflexive, then the relation is an equivalence relation.
Axiomatic constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. The same first-order language with "" and "" of classical set theory is usually used, so this is not to be confused with a constructive types approach. On the other hand, some constructive theories are indeed motivated by their interpretability in type theories.
The mathematical notion of quasitransitivity is a weakened version of transitivity that is used in social choice theory and microeconomics. Informally, a relation is quasitransitive if it is symmetric for some values and transitive elsewhere. The concept was introduced by Sen (1969) to study the consequences of Arrow's theorem.
In mathematics, a homogeneous relation on a set X is a binary relation between X and itself, i.e. it is a subset of the Cartesian product X × X. This is commonly phrased as "a relation on X" or "a (binary) relation over X". An example of a homogeneous relation is the relation of kinship, where the relation is between people.
Markov's principle, named after Andrey Markov Jr, is a conditional existence statement for which there are many equivalent formulations, as discussed below.
In constructive mathematics, pseudo-order is a name given to certain binary relations appropriate for modeling continuous orderings.
In mathematics, a relation on a set may, or may not, hold between two given members of the set. As an example, "is less than" is a relation on the set of natural numbers; it holds, for instance, between the values 1 and 3, and likewise between 3 and 4, but not between the values 3 and 1 nor between 4 and 4, that is, 3 < 1 and 4 < 4 both evaluate to false. As another example, "is sister of" is a relation on the set of all people, it holds e.g. between Marie Curie and Bronisława Dłuska, and likewise vice versa. Set members may not be in relation "to a certain degree" – either they are in relation or they are not.