Pseudomonas luteola

Last updated

Pseudomonas luteola
Scientific classification Red Pencil Icon.png
Domain: Bacteria
Phylum: Pseudomonadota
Class: Gammaproteobacteria
Order: Pseudomonadales
Family: Pseudomonadaceae
Genus: Pseudomonas
Species:
P. luteola
Binomial name
Pseudomonas luteola
Kodoma, et al., 1985
Type strain
ATCC 43273

CCUG 37974
CFBP 3007
CIP 102995
DSM 6975
IAM 13000
JCM 3352
LMG 7041

Contents

Synonyms

Chryseomonas luteola(Kodama et al. 1985) Holmes et al. 1987 [1]
Chryseomonas polytrichaHolmes et al. 1986

Pseudomonas luteola is an opportunistic pathogen, found ubiquitously in damp environments. Originally designated in the genus Chryseomonas, the species has since been reassigned to the genus Pseudomonas.

Morphology

Pseudomonas luteola is a Gram-negative, motile aerobe. Its motility is created by multitrichous flagella. They grow as rods of 0.8 μm to 2.5 μm. [2] Colonies produce a yellow-orange pigment. Optimal temperature for growth is 30 °C. Importantly for classification, it grows best on heart infusion agar supplemented with 5% horse blood. [3] It is also able to grow on TSA, Nutrient Agar, Mac Conkey or CASA Agar. [2]

Biosorption

Pseudomonas luteola can absorb certain heavy metals such as Cr(VI) and Al(III). [4] Both ions are found in industrial wastewaters. [4] These metals are specifically targeted by P. luteola strain TEM05. [4] Under relatively acidic conditions (pH: 4 and 5 for each ion respectively). [4] Experiments indicated a maximum adsorption capacity of 55.2 mg g−1 for Al(III) and 3.0 mg g−1 for Cr(VI). [4]

This same strain is also known to produce an exopolysaccharide (EPS) utilized in the adsorption of nickel and copper. [5] In order to adsorb Ni and Cu at significant levels, the strain must be immobilized in a calcium alginate beads. With this enhancement, maximum adsorption capacities range from 45.87–50.81 mg g−1 and 52.91–61.73 mg g−1, respectively. [5]

Pathenogenicity

The pathogenic form of Pseudomonas luteola is a saprophyte. [2] It is an opportunistic pathogen that can cause bacteremia, meningitis, prosthetic valve endocarditis, peritonitis in humans and animals. [2] P. luteola is registered by the CDC as group Ve-1. [3] Most strains are susceptible to broad-spectrum antibiotics, such as cephalosporins, aminosids, and ciprofloxacin. [3] However, infections associated with foreign material are highly resistant, and infected prostheses have to be removed if possible. [3]

Related Research Articles

<i>Pseudomonas</i> Genus of Gram-negative bacteria

Pseudomonas is a genus of Gram-negative, Gammaproteobacteria, belonging to the family Pseudomonadaceae and containing 191 validly described species. The members of the genus demonstrate a great deal of metabolic diversity and consequently are able to colonize a wide range of niches. Their ease of culture in vitro and availability of an increasing number of Pseudomonas strain genome sequences has made the genus an excellent focus for scientific research; the best studied species include P. aeruginosa in its role as an opportunistic human pathogen, the plant pathogen P. syringae, the soil bacterium P. putida, and the plant growth-promoting P. fluorescens, P. lini, P. migulae, and P. graminis.

Haemophilus ducreyi Species of gram-negative, pathogenic bacterium

Haemophilus ducreyi is a fastidious gram-negative coccobacillus bacteria.

Opportunistic infection Infection caused by pathogens that take advantage of an opportunity not normally available

An opportunistic infection is an infection caused by pathogens that take advantage of an opportunity not normally available. These opportunities can stem from a variety of sources, such as a weakened immune system, an altered microbiome, or breached integumentary barriers. Many of these pathogens do not cause disease in a healthy host that has a non-compromised immune system, and can, in some cases, act as commensals until the balance of the immune system is disrupted. Opportunistic infections can also be attributed to pathogens that cause mild illness in healthy individuals but lead to more serious illness when given the opportunity to take advantage of an immunocompromised host.

Alginic acid Polysaccharide found in brown algae

Alginic acid, also called algin, is a naturally occurring, edible polysaccharide found in brown algae. It is hydrophilic and forms a viscous gum when hydrated. With metals such as sodium and calcium, its salts are known as alginates. Its colour ranges from white to yellowish-brown. It is sold in filamentous, granular, or powdered forms.

<i>Pseudomonas aeruginosa</i> Species of bacterium

Pseudomonas aeruginosa is a common encapsulated, Gram-negative, strict aerobic, Rod-shaped bacterium that can cause disease in plants and animals, including humans. A species of considerable medical importance, P. aeruginosa is a multidrug resistant pathogen recognized for its ubiquity, its intrinsically advanced antibiotic resistance mechanisms, and its association with serious illnesses – hospital-acquired infections such as ventilator-associated pneumonia and various sepsis syndromes.

<i>Burkholderia cepacia</i> complex Species of bacterium

Burkholderia cepacia complex (BCC), or simply Burkholderia cepacia, is a group of catalase-producing, lactose-nonfermenting, Gram-negative bacteria composed of at least 20 different species, including B. cepacia, B. multivorans, B. cenocepacia, B. vietnamiensis, B. stabilis, B. ambifaria, B. dolosa, B. anthina, B. pyrrocinia and B. ubonensis. B. cepacia is an opportunistic human pathogen that most often causes pneumonia in immunocompromised individuals with underlying lung disease. Patients with sickle-cell haemoglobinopathies are also at risk. The species complex also attacks young onion and tobacco plants, and displays a remarkable ability to digest oil. Burkholderia cepacia is also found in marine environment and some strain of Burkholderia cepacia can tolerate high salinity. S.I. Paul et al. (2021) isolated and biochemically characterized salt tolerant strains of Burkholderia cepacia from marine sponges of the Saint Martin's Island of the Bay of Bengal, Bangladesh.

<i>Stenotrophomonas maltophilia</i> Species of bacterium

Stenotrophomonas maltophilia is an aerobic, nonfermentative, Gram-negative bacterium. It is an uncommon bacterium and human infection is difficult to treat. Initially classified as Bacterium bookeri, then renamed Pseudomonas maltophilia, S. maltophilia was also grouped in the genus Xanthomonas before eventually becoming the type species of the genus Stenotrophomonas in 1993.

<i>Burkholderia pseudomallei</i> Species of bacterium

Burkholderia pseudomallei is a Gram-negative, bipolar, aerobic, motile rod-shaped bacterium. It is a soil-dwelling bacterium endemic in tropical and subtropical regions worldwide, particularly in Thailand and northern Australia. Recently, there has been an expansion of the affected regions due to significant natural disasters and it can now be found in Southern China, Hong Kong, and countries in America. Although it is mainly a soil-dwelling bacteria, a study performed by Apinya Pumpuang and others showed that burkholderia pseudomallei survived in distilled water for 16 years, demonstrating that it is capable of living in water if a specific environment is provided. It infects humans and other animals most commonly livestock such as goats, pigs, and sheep. It happens less frequently in other animals, but is possible for them to get infected and causes the disease melioidosis. It is also capable of infecting plants.

Food microbiology

Food microbiology is the study of the microorganisms that inhabit, create, or contaminate food. This includes the study of microorganisms causing food spoilage; pathogens that may cause disease ; microbes used to produce fermented foods such as cheese, yogurt, bread, beer, and wine; and microbes with other useful roles, such as producing probiotics.

Burkholderia gladioli is a species of aerobic gram-negative rod-shaped bacteria that causes disease in both humans and plants. It can also live in symbiosis with plants and fungi and is found in soil, water, the rhizosphere, and in many animals. It was formerly known as Pseudomonas marginata.

Pseudomonas oryzihabitans is a nonfermenting yellow-pigmented, gram-negative, rod-shaped bacterium that can cause sepsis, peritonitis, endophthalmitis, and bacteremia. It is an opportunistic pathogen of humans and warm-blooded animals that is commonly found in several environmental sources, from soil to rice paddies. They can be distinguished from other nonfermenters by their negative oxidase reaction and aerobic character. This organism can infect individuals that have major illnesses, including those undergoing surgery or with catheters in their body. Based on the 16S RNA analysis, these bacteria have been placed in the Pseudomonas putida group.

<i>Pseudomonas stutzeri</i> Species of bacterium

Pseudomonas stutzeri is a Gram-negative soil bacterium that is motile, has a single polar flagellum, and is classified as bacillus, or rod-shaped. While this bacterium was first isolated from human spinal fluid, it has since been found in many different environments due to its various characteristics and metabolic capabilities. P. stutzeri is an opportunistic pathogen in clinical settings, although infections are rare. Based on 16S rRNA analysis, this bacterium has been placed in the P. stutzeri group, to which it lends its name.

Pathogenic bacteria Disease-causing bacteria

Pathogenic bacteria are bacteria that can cause disease. This article focuses on the bacteria that are pathogenic to humans. Most species of bacteria are harmless and are often beneficial but others can cause infectious diseases. The number of these pathogenic species in humans is estimated to be fewer than a hundred. By contrast, several thousand species are part of the gut flora present in the digestive tract.

Pseudomonas infection refers to a disease caused by one of the species of the genus Pseudomonas.

<i>Aeromonas salmonicida</i> Species of bacterium

Aeromonas salmonicida is a pathogenic bacterium that severely impacts salmonid populations and other species. It was first discovered in a Bavarian brown trout hatchery by Emmerich and Weibel in 1894. Aeromonas salmonicida's ability to infect a variety of hosts, multiply, and adapt, make it a prime virulent bacterium. A. salmonicida is an etiological agent for furunculosis, a disease that causes sepsis, haemorrhages, muscle lesions, inflammation of the lower intestine, spleen enlargement, and death in freshwater fish populations. It is found worldwide with the exception of South America. The major route of contamination is poor water quality; however, it can also be associated stress factors such as overcrowding, high temperatures, and trauma. Spawning and smolting fish are prime victims of furunculosis due to their immunocompromised state of being.

<i>Citrobacter freundii</i> Species of bacterium

Citrobacter freundii is a species of facultative anaerobic Gram-negative bacteria of the family Enterobacteriaceae which currently consists of 13 recognized species. These bacteria have a rod shape with a typical length of 1–5 μm. Most C. freundii cells have several flagella used for locomotion, although some non-motile taxa do not. C. freundii is a soil-dwelling microorganism, but can also be found in water, sewage, food, and the intestinal tracts of animals and humans. The genus Citrobacter was discovered in 1932 by Werkman and Gillen. Cultures of C. freundii were isolated and identified in the same year from soil extracts.

Neisseria bacilliformis is a bacterium commonly found living as a commensal in the mucous membranes of mammals. However, depending on host immunocompetence, there have been documented cases of N. bacilliformis infections of the respiratory tract and oral cavity thus making it an opportunistic pathogen. It was originally isolated from patients being treated in a cancer center. Rarely, a more serious infection such as endocarditis can occur often as a result of a predisposing condition.

Delftia tsuruhatensis is a Gram-negative, rod-shaped, catalase- and oxidase-positive, motile bacterium from the Comamonadaceae family, which was isolated from a domestic wastewater treatment plant in Japan. D. tsuruhatensis is an opportunistic and emergent pathogen. All documented infections are healthcare-associated.

Bordetella trematum is a species of Gram-negative bacteria identified in 1996 by comparison of 10 strains of B. trematum against other well characterized Bordetella and Alcaligenes species. The term trema refers to something pierced or penetrated, or to a gap. "Trematum" pertains to open things, and refers to the presence of bacteria in wounds and other exposed parts of the body. Strain LMG 13506T is the reference strain for this species.

Legionella jordanis is a Gram-negative bacterium from the genus Legionella which was isolated from the Jordan River in Bloomington, Indiana and from the sewage in DeKalb County, Georgia. L. jordanis is a rare human pathogen and can cause respiratory tract infections.

References

  1. Anzai, Yojiro; Kudo, Yuko; Oyaizu, Hiroshi (1997). "The Phylogeny of the Genera Chryseomonas, Flavimonas, and Pseudomonas Supports Synonymy of These Three Genera". International Journal of Systematic Bacteriology. 47 (2): 249–51. doi: 10.1099/00207713-47-2-249 . PMID   9103607.
  2. 1 2 3 4 http://www.tgw1916.net/Pseudomonas/luteola.html%5B%5D
  3. 1 2 3 4 Chihab, Wafae; Alaoui, Ahmed S.; Amar, Mohamed (2004). "Chryseomonas luteola Identified as the Source of Serious Infections in a Moroccan University Hospital". Journal of Clinical Microbiology. 42 (4): 1837–9. doi:10.1128/JCM.42.4.1837-1839.2004. PMC   387548 . PMID   15071064.
  4. 1 2 3 4 5 Ozdemir, G.; Baysal, S. H. (2004). "Chromium and aluminum biosorption on Chryseomonas luteola TEM05". Applied Microbiology and Biotechnology. 64 (4): 599–603. doi:10.1007/s00253-003-1479-0. PMID   14605774. S2CID   19249477.
  5. 1 2 Ozdemir, Guven; Ceyhan, Nur; Manav, Ebru (2005). "Utilization of an exopolysaccharide produced by Chryseomonas luteola TEM05 in alginate beads for adsorption of cadmium and cobalt ions". Bioresource Technology. 96 (15): 1677–82. doi:10.1016/j.biortech.2004.12.031. PMID   16023570.