Pyr1

Last updated
Pyr1
Pyr1.svg
Names
Preferred IUPAC name
5,11-Dimethyl-1-oxo-2,6-dihydro-1H-pyrido[4,3-b]carbazol-9-yl benzoate
Other names
LIMINIB
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/C24H18N2O3/c1-13-17-10-11-25-23(27)21(17)14(2)20-18-12-16(8-9-19(18)26-22(13)20)29-24(28)15-6-4-3-5-7-15/h3-12,26H,1-2H3,(H,25,27)
    Key: BPGBAEXPBQHBSV-UHFFFAOYSA-N
  • O=C(C1=CC=CC=C1)OC(C=C2)=CC3=C2NC4=C3C(C)=C5C(C=CNC5=O)=C4C
Properties
C24H18N2O3
Molar mass 382.419 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Pyr1 (LIMINIB) is an organic compound composed of carbon, hydrogen, oxygen and nitrogen that inhibits the enzyme LIM kinase.

Contents

It was discovered by the Cure and Inserm Institute, CNRS and CEA in the 2010s. The studies in vitro and with animals, [1] prove that this molecule has a completely new mechanism of action that could be used against chemotherapy resistant cells.

Pyr1 reversibly stabilizes microtubules, blocks actin microfilament dynamics and inhibits cell motility in vitro. These characteristics confer not only anticancer properties but also the capacity to prevent metastasis to the molecule.

Description and properties

Pyr1 is classified as a small molecule that belongs to the group of pyridocarbazoles. [2] Its small size gives it special properties: as a light molecule it is a valuable tool for studying dynamic biological processes. Therefore, it is a key discovery in medical and biological investigation. It is a high degree protein temporal controller, as it is able to interact in a few minutes or even seconds with molecules such as LIMK1. Its reversibility enables it to quickly activate and inhibit itself, making the molecule a specific inhibitor both in vitro and in cellulo.

Pyr1 can be described as a tetracyclic molecule with a simple structure. Its few radicals are widely expanded along the benzene rings, distinguishing a benzoyloxy group in the ninth carbon and two methyl radicals in carbon five and eleven. There is also a ketone group in carbon one and two hydrogen radicals in carbons two and six.

Mechanism of action

Pyr 1 is a cell permeable competitive inhibitor of Lim Kinase (especially LIMK1). The latter is the enzyme that uses ATP to phosphorylate and inactivate the actin-depolymerizing factor cofilin. When cofilin is phosphorylated, it regulates actin dynamics. LIMK1 also depolymerizes microtubules.

Mechanism of action of LIMK1 ESQUEMA1.JPG
Mechanism of action of LIMK1

In the presence of Pyr1, LIMK1 is inhibited, which means that the phosphorylation of cofilin decreases, which results in the blockage of the regulation of actin microfilaments dynamics and, therefore, the disorganization of microfilaments. It also causes the stabilization of microtubules. This inhibition is reversible.

In conclusion, Pyr1 inhibits cell motility and controls actin dynamics and stabilizes microtubules. These properties can be used in anticancer treatment.

Mechanism of action of Pyr1 ESQUEMA2.JPG
Mechanism of action of Pyr1

Medical applications

Cancer metastasis consists in the fast and uncontrolled division of abnormal cells. Microtubules have a key role in mitosis: they generate the mitotic spindle assembly, which allows chromosome segregation and the cell division. Their stabilization leads to the inability of cells to reproduce or to their apoptosis. That is why microtubule targeting agents are, nowadays, powerful anticancer drugs. It also explains why tubulin is now considered as one of the most highly validated cancer targets.

These anticancer drugs have, however, some limitations due to side effects, principally myelosuppression and neurotoxicity. But the main inconvenience is that many cancers are, or become, resistant to these drugs. Several strategies have been proposed for the development of more effective and less toxic anticancer drugs. One of them is to use molecules that can induce the stabilization of microtubules, and Pyr1 is one of them.

Pyr1 may be used in cancer treatment, because its main target enzyme (LIM kinase) is a regulator of microtubule and actin dynamics. Moreover, it has been shown that Pyr1 is toxic for cancerous cell lines, even the ones that are resistant to conventional microtubule targeting agents.

Furthermore, the toxicity of Pyr1 has been studied in mice, to evaluate whether it could really work as a chemotherapeutic agent. The results show a complete survival of mice against xenografted tumors with no apparent toxicity, as there was no loss of weight observed. Therefore, it has been concluded that Pyr1 has a good therapeutic efficacy preventing tumor growth at doses that are well tolerated by animals.

Bearing the previous points in mind, Pyr1 may be used in addition or as an alternative to standard chemotherapy in drug resistant tumors.

Related Research Articles

Microtubule Polymer of tubulin that forms part of the cytoskeleton

Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27 nm and have an inner diameter between 11 and 15 nm. They are formed by the polymerization of a dimer of two globular proteins, alpha and beta tubulin into protofilaments that can then associate laterally to form a hollow tube, the microtubule. The most common form of a microtubule consists of 13 protofilaments in the tubular arrangement.

ADF/Cofilin family

ADF/cofilin is a family of actin-binding proteins associated with the rapid depolymerization of actin microfilaments that give actin its characteristic dynamic instability. This dynamic instability is central to actin's role in muscle contraction, cell motility and transcription regulation.

Cofilin 1

Cofilin 1 , also known as CFL1, is a human gene, part of the ADF/cofilin family.

LIM kinase-1 (LIMK1) and LIM kinase-2 (LIMK2) are actin-binding kinases that phosphorylate members of the ADF/cofilin family of actin binding and filament severing proteins. ADF/cofilin are the only substrates yet identified for the LIM kinases. LIM kinases directly phosphorylate and inactivate members of the cofilin family, resulting in stabilization of filamentous (F)-actin. Lim kinases are activated by signaling through small GTPases of the Rho family. Upstream, LIMK1 is regulated by Pak1, and LIMK2 by the Rho-dependent kinase ROCK. Lim Kinases are activated by PAK. Recent work indicates that LIMK activity is also modulated by HIV-1 viral proteins.

Transforming protein RhoA Protein-coding gene in the species Homo sapiens

Transforming protein RhoA, also known as Ras homolog family member A (RhoA), is a small GTPase protein in the Rho family of GTPases that in humans is encoded by the RHOA gene. While the effects of RhoA activity are not all well known, it is primarily associated with cytoskeleton regulation, mostly actin stress fibers formation and actomyosin contractility. It acts upon several effectors. Among them, ROCK1 and DIAPH1 are the best described. RhoA, and the other Rho GTPases, are part of a larger family of related proteins known as the Ras superfamily, a family of proteins involved in the regulation and timing of cell division. RhoA is one of the oldest Rho GTPases, with homologues present in the genomes since 1.5 billion years. As a consequence, RhoA is somehow involved in many cellular processes which emerged throughout evolution. RhoA specifically is regarded as a prominent regulatory factor in other functions such as the regulation of cytoskeletal dynamics, transcription, cell cycle progression and cell transformation.

ROCK1

ROCK1 is a protein serine/threonine kinase also known as rho-associated, coiled-coil-containing protein kinase 1. Other common names are ROKβ and P160ROCK. ROCK1 is a major downstream effecter of the small GTPase RhoA and is a regulator of the actomyosin cytoskeleton which promotes contractile force generation. ROCK1 plays a role in cancer and in particular cell motility, metastasis, and angiogenesis.

LIMK1

LIM domain kinase 1 is an enzyme that in humans is encoded by the LIMK1 gene.

LIMK2

LIM domain kinase 2 is an enzyme that in humans is encoded by the LIMK2 gene.

SSH1

For the SSH-1 protocol, see Secure Shell#Version 1.x

SSH2

Protein phosphatase Slingshot homolog 2 is an enzyme that in humans is encoded by the SSH2 gene.

Eribulin

Eribulin, sold under the brand name Halaven, is an anticancer medication used to treat breast cancer and liposarcoma.

SSH3

Protein phosphatase Slingshot homolog 3 is an enzyme that in humans is encoded by the SSH3 gene.

Invadopodia

Invadopodia are actin-rich protrusions of the plasma membrane that are associated with degradation of the extracellular matrix in cancer invasiveness and metastasis. Very similar to podosomes, invadopodia are found in invasive cancer cells and are important for their ability to invade through the extracellular matrix, especially in cancer cell extravasation. Invadopodia are generally visualized by the holes they create in ECM -coated plates, in combination with immunohistochemistry for the invadopodia localizing proteins such as cortactin, actin, Tks5 etc. Invadopodia can also be used as a marker to quantify the invasiveness of cancer cell lines in vitro using a hyaluronic acid hydrogel assay.

Cofilin-2 Protein-coding gene in the species Homo sapiens

Cofilin 2 (muscle) also known as CFL2 is a protein which in humans is encoded by the CFL2 gene.

Rho-associated protein kinase

Rho-associated protein kinase (ROCK) is a kinase belonging to the AGC family of serine-threonine specific protein kinases. It is involved mainly in regulating the shape and movement of cells by acting on the cytoskeleton.

Tubulin inhibitors are chemotherapy drugs that interfere directly with the tubulin system, which is in contrast to those chemotherapy drugs acting on DNA. Microtubules play an important role in eukaryotic cells. Alpha- and beta-tubulin, the main components of microtubules, have gained considerable interest because of their function and biophysical properties and has become the subject of intense study. The addition of tubulin ligands can affect microtubule stability and function, including mitosis, cell motion and intracellular organelle transport. Tubulin binding molecules have generated significant interest after the introduction of the taxanes into clinical oncology and the general use of the vinca alkaloids. These compounds inhibit cell mitosis by binding to the protein tubulin in the mitotic spindle and preventing polymerization or depolymerization into the microtubules. This mode of action is also shared with another natural agent called colchicine.

Withaferin A Chemical compound

Withaferin A is a steroidal lactone, derived from Acnistus arborescens, Withania somnifera and other members of family Solanaceae. It has been traditionally used in ayurvedic medicine. It is the first member of the withanolide class of ergostane type product to be discovered. This natural product has wide range of pharmacological activities including cardioprotective, anti-inflammatory, immuno-modulatory, anti-angiogenesis, anti-metastasis and anti-carcinogenic properties.

Cytoskeletal drugs Substances or medications that interact with actin or tubulin

Cytoskeletal drugs are small molecules that interact with actin or tubulin. These drugs can act on the cytoskeletal components within a cell in three main ways. Some cytoskeletal drugs stabilize a component of the cytoskeleton, such as taxol which stabilizes microtubules or Phalloidin which stabilizes actin filaments. Others such as Cytochalasin D bind to actin monomers and prevent them from polymerizing into filaments. Drugs such as demecolcine act by enhancing the depolymerisation of already formed microtubules. Some of these drugs have multiple effects on the cytoskeleton, for example Latrunculin both prevents actin polymerization as well as enhancing its rate of depolymerization. Typically the microtubule targeting drugs can be found in the clinic where they are used therapeutically in the treatment of some forms of cancer. As a result of the lack of specificity for specific type of actin the use of these drugs in animals results in unacceptable off target effects. Despite this the actin targeting compounds are still useful tools that can be used on a cellular level to help further our understanding of how this complex part of the cells internal machinery operates. For example, Phalloidin which has been conjugated with a fluorescent probe can be used for visualizing the filamentous actin in fixed samples.

mTOR inhibitors Class of pharmaceutical drugs

mTOR inhibitors are a class of drugs that inhibit the mechanistic target of rapamycin (mTOR), which is a serine/threonine-specific protein kinase that belongs to the family of phosphatidylinositol-3 kinase (PI3K) related kinases (PIKKs). mTOR regulates cellular metabolism, growth, and proliferation by forming and signaling through two protein complexes, mTORC1 and mTORC2. The most established mTOR inhibitors are so-called rapalogs, which have shown tumor responses in clinical trials against various tumor types.

For cancer, invasion is the direct extension and penetration by cancer cells into neighboring tissues. It is generally distinguished from metastasis, which is the spread of cancer cells through the circulatory system or the lymphatic system to more distant locations. Yet, lymphovascular invasion is generally the first step of metastasis.

References

  1. Prudent, R.; Vassal-Stermann, E.; Nguyen, C.-H.; Pillet, C.; Martinez, A.; Prunier, C.; Barette, C.; Soleilhac, E.; Filhol, O. (2012). "Pharmacological Inhibition of LIM Kinase Stabilizes Microtubules and Inhibits Neoplastic Growth". Cancer Research. 72 (17): 4429–39. doi: 10.1158/0008-5472.CAN-11-3342 . PMID   22761334.
  2. Pyridocarbazoles