Pyrobitumen

Last updated
Pyrobitumen
Figure 1 Abraham Bitumen Classification System.jpg
Classification System for Bitumens as Adapted from Abraham and Curiale
General
CategoryOrganic matter
ColourVariable

Pyrobitumen is a type of solid, amorphous organic matter. Pyrobitumen is mostly insoluble in carbon disulfide and other organic solvents as a result of molecular cross-linking, which renders previously soluble organic matter (i.e., bitumen) insoluble. [1] [2] Not all solid bitumens are pyrobitumens, in that some solid bitumens (e.g., gilsonite) are soluble in common organic solvents, including CS
2
, dichloromethane, and benzene-methanol mixtures.

Contents

While the primary distinction between bitumen and pyrobitumen is solubility, the thermal processes driving the molecular cross-linking also decrease the atomic ratio of hydrogen to carbon from greater than one to less than one and ultimately to approximately one half. It should also be understood that both solubility and atomic H/C ratios form a continuum, and most solid bitumens have both soluble and insoluble components. The distinction between pyrobitumen and residual kerogen in a mature source rock is based on microscopic evidence of fluid flow within the rock fabric and is usually not determined.

The terms bitumen and pyrobitumen have related definitions in the Earth's crust and in the laboratory. In geology, bitumen is the product of deposition and maturation of organic matter. The extractable organic material (EOM) in petroleum source rocks and reservoir rocks is defined as bitumen. Upon exposure to high regional temperatures over geological time, bitumen is converted to pyrobitumen as a result of the thermally activated reactions that drive off lighter oil and gas products and leave an insoluble, carbon-rich residue. Pyrobitumen represents a significant fraction of the ultimate fate of petroleum liquids formed from kerogen during catagenesis. In the laboratory, experiments on organic-rich rocks (oil shales and petroleum source rocks), decomposition of the initially insoluble organic matter (defined as kerogen) produces gaseous and liquid products. The soluble fluid that remains in the heated rock is defined as bitumen. Upon further thermal exposure, the bitumen continues to evolve and disproportionates into pyrobitumen and more oil and gas.

The terms bitumen and asphalt are often used interchangeably to describe highly viscous to solid forms of petroleum that have been used in construction since the fifth millennium B.C. Bitumen is distinct from tar, which properly describes a product formed by pyrolysis (destructive distillation) of coal or wood. Pitch recovered from petroleum by distillation is also sometimes called bitumen or asphalt.

Etymology

The expression "bitumen" originated in the Sanskrit, where we find the words jatu, meaning "pitch," and jatu-krit, meaning "pitch creating", "pitch producing" (referring to coniferous or resinous trees). The Latin equivalent is claimed by some to be originally gwitu-men (pertaining to pitch), and by others, pixtumens (exuding or bubbling pitch), which was subsequently shortened to bitumen.

Definition

Hunt [3] defines bitumen as a native substance of variable color, viscosity, and volatility composed primarily of carbon and hydrogen. He further defines petroleum as a form of bitumen that is gaseous or liquid in the reservoir and can be produced through a pipe. Other bitumens range from very viscous (e.g., Athabasca and Venezuelan heavy oils, La Brea tar pits) to solid (e.g. gilsonite, ozocerite, grahamite, impsonite). Pyrobitumen is formed by thermal decomposition and molecular cross-linking of bitumen. Pyrobitumen is distinguished from other solid bitumens extruded from early-mature kerogen-rich source rocks (e.g., gilsonite) and semi-solid bitumens in high viscosity oil sands formed by water washing and biodegradation of conventional oil (e.g., Athabasca bituminous sands), all of which are soluble in carbon disulfide.

Figure 2. Classification System for Solid Bitumens Adapted from Curiale using modern organic geochemical techniques. Figure 2 Curiale Solid Bitumen Classification System.jpg
Figure 2. Classification System for Solid Bitumens Adapted from Curiale using modern organic geochemical techniques.

Classification

Archaic classification systems for classifying bitumens were constructed without the extensive knowledge of organic geochemistry developed over the past 50 years. Pyrobitumen was originally defined as a solid bitumen that is insoluble and infusible. The original classification system for solid bitumen of Abraham, [4] as adapted from Curiale, [5] is shown in Figure 1. Curiale says that while the historical classification scheme is useful for sorting museum collections, it is not useful for establishing genetic relationships, and he proposed the alternative classification shown in Figure 2.

Although there is not a direct relationship between the classification systems in Figures 1 and 2, one kind of pyrobitumen is a subset of the post-oil solid bitumen formed by thermal degradation of kerogen and oil. Of the 27 samples investigated by Curiale, the three impsonite samples had low solubility (<3%) and a low H/C ratio (<0.9) characteristic of highly mature organic matter. These samples also had the lowest asphaltene, highest aromatic, and highest volatile content in the soluble fraction. Carbon deposits associated with uranium nodules also had low solubilities and H/C ratios less than 1.0 and correspond to pyrobitumens with inorganic origins. For comparison, coal tar pitch has an atomic H/C ratio of about 0.8. [6] In the petroleum geochemistry community, pyrobitumen is the remains of thermally altered oil that was previously generated during kerogen maturation—much of that oil migrated to and accumulated in an oil reservoir. Petrographic studies of residues of hydrous pyrolysis, which is considered to be a good laboratory simulation of natural petroleum formation, show the formation of a continuous bituminous network during the early stages of kerogen transformation, some of which is converted to pyrobitumen at high thermal exposure. [7] This definition is consistent with that given for pyrobitumen in the Society of Petroleum Engineers Glossary: “a hard, native asphalt within the [rock] pores. Does not ordinarily move or enter into the reaction.” [8] Hunt [9] uses this definition of thermally mature residue to calculate material balances for the fate of oil at very high maturities, both that retained in the source rock and that from reservoirs. Pyrobitumen in thermally mature oil reservoirs has been characterized by Hwang. [10] More recently, the pyrobitumen retained in the source rock is considered to play an important role in the storage and production of shale gas. [11] In oil shale retorting, pyrobitumen residue has an atomic H/C ratio of about 0.5 and is often called coke, [12] which has its analog in the production of petroleum and coal cokes by destructive distillation.

Some archaic definitions of pyrobitumen include peat and lignite, although these materials experienced little geological heating compared to that required to form fluid bitumen, let alone pyrobitumen. For humic-derived solids in the earth, an analogous position on the coal maturation pathway would place it at a minimum in the medium-volatile bituminous range (i.e., H/C<0.8, O/C<0.05, and vitrinite reflectance >1.0%)., [13] [14] [15] For petroleum systems, Mukhopadhyay [16] states that solid bitumen starts to form when vitrinite reflectance reaches 0.45%, i.e., the early stages of conversion of kerogen to oil and gas. Bitumen also becomes more reflective with maturity, and he gives an equivalent bitumen reflectance of 0.6% for a vitrinite reflectance of 1.0%, which corresponds to the boundary between asphalt/albertite and epi-impsonite. Although the archaic definition of pyrobitumen includes low-maturity solid bitumens such as albertite, a definition more closely linked to the formation and destruction of oil from kerogen would define pyrobitumen as having an H/C ratio less than 1.0. In fact, the Biomarker Guide [17] defines pyrobitumen as having an H/C ratio less than 0.5, which corresponds to vitrinite reflectance of about 2.0% and low-volatile bituminous to semi-anthracite coal rank. Hwang et al. [10] found that the solubility of solid reservoir bitumens decreased below 50% for a vitrinite reflectance of 0.7% and below 20% for vitrinite reflectance greater than 1.0%, with a vitrinite reflectance of 1.1% corresponding to an atomic H/C ratio of 0.8. Warner et al. [18] also found pyrobitumen in the Tengiz field with H/C of 0.8. They also quote it as having high reflectivity, including the occurrence of mosaic reflectivity texture. Pyrolysis yielded some oil similar to that from which it was derived. Bordenave [19] describes pyrobitumen as having a reflectivity of between 1.5 and 2.5% and a pyrolysis yield of less than 80 mg hydrocarbon/g organic carbon. From these descriptions and other pyrolysis studies, it becomes clear that the H/C ratio of 0.5 given by Peters corresponds to the end of such pyrolysis yield, even though the bitumen becomes insoluble, and therefore pyrobitumen, prior to that maturity.

Related Research Articles

<span class="mw-page-title-main">Petroleum</span> Naturally occurring flammable liquid

Petroleum, also known as crude oil, or simply oil, is a naturally occurring yellowish-black liquid mixture of mainly hydrocarbons, and is found in geological formations. The name petroleum covers both naturally occurring unprocessed crude oil and petroleum products that consist of refined crude oil. A fossil fuel, petroleum is formed when large quantities of dead organisms, mostly zooplankton and algae, are buried underneath sedimentary rock and subjected to both prolonged heat and pressure.

<span class="mw-page-title-main">Oil shale</span> Organic-rich fine-grained sedimentary rock containing kerogen

Oil shale is an organic-rich fine-grained sedimentary rock containing kerogen from which liquid hydrocarbons can be produced. In addition to kerogen, general composition of oil shales constitutes inorganic substance and bitumens. Based on their deposition environment, oil shales are classified as marine, lacustrine and terrestrial oil shales. Oil shales differ from oil-bearing shales, shale deposits that contain petroleum that is sometimes produced from drilled wells. Examples of oil-bearing shales are the Bakken Formation, Pierre Shale, Niobrara Formation, and Eagle Ford Formation. Accordingly, shale oil produced from oil shale should not be confused with tight oil, which is also frequently called shale oil.

<span class="mw-page-title-main">Bituminous coal</span> Collective term for higher quality coal

Bituminous coal, or black coal, is a type of coal containing a tar-like substance called bitumen or asphalt. Its coloration can be black or sometimes dark brown; often there are well-defined bands of bright and dull material within the seams. It is typically hard but friable. Its quality is ranked higher than lignite and sub-bituminous coal, but lesser than anthracite. It is the most abundant rank of coal, with deposits found around the world, often in rocks of Carboniferous age. Bituminous coal is formed from sub-bituminous coal that is buried deeply enough to be heated to 85 °C (185 °F) or higher.

Petroleum geology is the study of origin, occurrence, movement, accumulation, and exploration of hydrocarbon fuels. It refers to the specific set of geological disciplines that are applied to the search for hydrocarbons.

<span class="mw-page-title-main">Kerogen</span> Solid organic matter in sedimentary rocks

Kerogen is solid, insoluble organic matter in sedimentary rocks. Comprising an estimated 1016 tons of carbon, it is the most abundant source of organic compounds on earth, exceeding the total organic content of living matter 10,000-fold. It is insoluble in normal organic solvents and it does not have a specific chemical formula. Upon heating, kerogen converts in part to liquid and gaseous hydrocarbons. Petroleum and natural gas form from kerogen. Kerogen may be classified by its origin: lacustrine (e.g., algal), marine (e.g., planktonic), and terrestrial (e.g., pollen and spores). The name "kerogen" was introduced by the Scottish organic chemist Alexander Crum Brown in 1906, derived from the Greek for "wax birth" (Greek: κηρός "wax" and -gen, γένεση "birth").

A maceral is a component, organic in origin, of coal or oil shale. The term 'maceral' in reference to coal is analogous to the use of the term 'mineral' in reference to igneous or metamorphic rocks. Examples of macerals are inertinite, vitrinite, and liptinite.

Organic geochemistry is the study of the impacts and processes that organisms have had on the Earth. It is mainly concerned with the composition and mode of origin of organic matter in rocks and in bodies of water. The study of organic geochemistry is traced to the work of Alfred E. Treibs, "the father of organic geochemistry." Treibs first isolated metalloporphyrins from petroleum. This discovery established the biological origin of petroleum, which was previously poorly understood. Metalloporphyrins in general are highly stable organic compounds, and the detailed structures of the extracted derivatives made clear that they originated from chlorophyll.

Unconventional oil is petroleum produced or extracted using techniques other than the conventional method. Industry and governments across the globe are investing in unconventional oil sources due to the increasing scarcity of conventional oil reserves. Unconventional oil and gas have already made a dent in international energy linkages by reducing US energy import dependency.

Shale oil is an unconventional oil produced from oil shale rock fragments by pyrolysis, hydrogenation, or thermal dissolution. These processes convert the organic matter within the rock (kerogen) into synthetic oil and gas. The resulting oil can be used immediately as a fuel or upgraded to meet refinery feedstock specifications by adding hydrogen and removing impurities such as sulfur and nitrogen. The refined products can be used for the same purposes as those derived from crude oil.

Petroleum geochemistry is the branch of geochemistry which deals with the application of chemical principles in the study of the origin, generation, migration, accumulation, and alteration of petroleum...(John M. Hunt, 1979). Petroleum is generally considered oil and natural gases having various compounds composed of primarily hydrogen and carbon. They are usually generated from the decomposition and/or thermal maturation of organic matter. The organic matter originated from plants and algae. The organic matter is deposited after the death of the plant in sediments, where after considerable time, heat, and pressure the compounds in the plants and algae are altered to oil, gas, and kerogen. Kerogen can be thought of as the remaining solid material of the plant. The sediment - usually clay and/or calcareous (lime) ooze, hardens during this alteration process into rock i.e. shale and/or limestone. The shale or limestone rock containing the organic matter is called the source rock because it is the source, having generated the petroleum.

Heavy crude oil is highly-viscous oil that cannot easily flow from production wells under normal reservoir conditions.

<span class="mw-page-title-main">Organic-rich sedimentary rocks</span>

Organic-rich sedimentary rocks are a specific type of sedimentary rock that contains significant amounts (>3%) of organic carbon. The most common types include coal, lignite, oil shale, or black shale. The organic material may be disseminated throughout the rock giving it a uniform dark color, and/or it may be present as discrete occurrences of tar, bitumen, asphalt, petroleum, coal or carbonaceous material. Organic-rich sedimentary rocks may act as source rocks which generate hydrocarbons that accumulate in other sedimentary "reservoir" rocks. Potential source rocks are any type of sedimentary rock that the ability to dispel available carbon from within it. Good reservoir rocks are any sedimentary rock that has high pore-space availability. This allows the hydrocarbons to accumulate within the rock and be stored for long periods of time. Highly permeable reservoir rocks are also of interest to industry professionals, as they allow for the easy extraction of the hydrocarbons within. The hydrocarbon reservoir system is not complete however without a "cap rock". Cap rocks are rock units which have very low porosity and permeability, which trap the hydrocarbons within the units below as they try to migrate upwards.

<span class="mw-page-title-main">Asphaltene</span> Heavy organic molecular substances that are found in crude oil

Asphaltenes are molecular substances that are found in crude oil, along with resins, aromatic hydrocarbons, and saturates. The word "asphaltene" was coined by Boussingault in 1837 when he noticed that the distillation residue of some bitumens had asphalt-like properties. Asphaltenes in the form of asphalt or bitumen products from oil refineries are used as paving materials on roads, shingles for roofs, and waterproof coatings on building foundations.

Torbanite, also known as boghead coal or channel coal, is a variety of fine-grained black oil shale. It usually occurs as lenticular masses, often associated with deposits of Permian coals. Torbanite is classified as lacustrine type oil shale.

<span class="mw-page-title-main">Oil shale geology</span> Branch of geology

Oil shale geology is a branch of geologic sciences which studies the formation and composition of oil shales–fine-grained sedimentary rocks containing significant amounts of kerogen, and belonging to the group of sapropel fuels. Oil shale formation takes place in a number of depositional settings and has considerable compositional variation. Oil shales can be classified by their composition or by their depositional environment. Much of the organic matter in oil shales is of algal origin, but may also include remains of vascular land plants. Three major type of organic matter (macerals) in oil shale are telalginite, lamalginite, and bituminite. Some oil shale deposits also contain metals which include vanadium, zinc, copper, and uranium.

Oil shale gas is a synthetic non-condensable gas mixture (syngas) produced by oil shale thermal processing (pyrolysis). Although often referred to as shale gas, it differs from the natural gas produced from shale, which is also known as shale gas.

<span class="mw-page-title-main">Bend Arch–Fort Worth Basin</span>

The Bend Arch–Fort Worth Basin Province is a major petroleum producing geological system which is primarily located in North Central Texas and southwestern Oklahoma. It is officially designated by the United States Geological Survey (USGS) as Province 045 and classified as the Barnett-Paleozoic Total Petroleum System (TPS).

In petroleum geology, source rock is rock which has generated hydrocarbons or which could generate hydrocarbons. Source rocks are one of the necessary elements of a working petroleum system. They are organic-rich sediments that may have been deposited in a variety of environments including deep water marine, lacustrine and deltaic. Oil shale can be regarded as an organic-rich but immature source rock from which little or no oil has been generated and expelled. Subsurface source rock mapping methodologies make it possible to identify likely zones of petroleum occurrence in sedimentary basins as well as shale gas plays.

The Himmetoğlu oil shale deposit is located in the southwestern part of Bolu Province, Turkey. It occurs in the form of a successive, predominantly brown and brownish grey oil layers between pyroclastic outcrops. Himmetoğlu oil shale basin is of Neogene age. Volcanism and tectonic activities had considerable influences on the environmental conditions during the deposition period.

Bituminite is an autochthonous maceral that is a part of the liptinite group in lignite, that occurs in petroleum source rocks originating from organic matter such as algae which has undergone alteration or degradation from natural processes such as burial. It occurs as fine-grained groundmass, laminae or elongated structures that appear as veinlets within horizontal sections of lignite and bituminous coals, and also occurs in sedimentary rocks. Its occurrence in sedimentary rocks is typically found surrounding alginite, and parallel along bedding planes. Bituminite is not considered to be bitumen because its properties are different from most bitumens. It is described to have no definite shape or form when present in bedding and can be identified using different kinds of visible and fluorescent lights. There are three types of bituminite: type I, type II and type III, of which type I is the most common. The presence of bituminite in oil shales, other oil source rocks and some coals plays an important factor when determining potential petroleum-source rocks.

References

  1. B. P. Tissot and D. H. Welte (1984) Petroleum Formation and Occurrence, 2nd ed., Springer-Verlag, pp. 460-463.
  2. J. M. Hunt, Petroleum Geochemistry and Geology, 2nd ed., Freeman, 1996, p. 437.
  3. J. M. Hunt, Petroleum Geochemistry and Geology, 1st ed., Freeman, 1979, p. 28, 546.
  4. H. Abraham (1945) Asphalts and Allied Substances, Van Nostrand-Rheinhold, page 62.
  5. J. A. Curiale, Origin of solid bitumens, with emphasis on biological marker results, Org. Geochem. Vol. 10, pp. 559-580, 1986.
  6. E. Fitzer, K.H. Dochling, H. P Boehm, and H. Marsh, “Recommended terminology for the description of carbon as a solid,” Pure Appl. Chem., Vol. 67, pp. 473-506, 1995.
  7. M. D. Lewan, “Petrographic study of primary petroleum migration in the Woodford Shale and related rock units,” in (ed. B. Doligez) Migration of Hydrocarbons in Sedimentary Basins, Editions Technip, Paris, p.113-130.
  8. http://www.spe.org/glossary/wiki/doku.php/terms:pyrobitumen, downloaded January 2, 2014.
  9. J. M. Hunt, Petroleum Geochemistry and Geology, 2nd ed., Freeman, 1996, p. 597.
  10. 1 2 R. J. Hwang, S. C. Teerman, R. M. Carlson, “Geochemical comparison of reservoir solid bitumens with diverse origins,” Org. Geochem. Vol. 29, pp. 505-517, 1998.
  11. R. G. Loucks, R. M. Reed, S. C. Ruppel, and D. M. Jarvie, “Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale,” J. Sed. Res., Vol. 79, pp. 848-861 (2009).
  12. A. K. Burnham and J. A. Happe, “On the mechanism of kerogen pyrolysis,” Fuel, Vol. 63, 1353-1356, 1984.
  13. J. T. McCartney and S. Ergun, “Optical properties of graphite and coal,” Fuel, Vol. 37, pp. 272-281, 1958.
  14. W. Kalkreuth, M. Steller, I. Wieschenkamper, and S. Ganz, “Petrographic and chemical characterization of Canadian and German coals in relation to utilization potential. 1. Petrographic and chemical characterization of feedcoals,” Fuel, Vol. 70, 683-694, 1991.
  15. J. T. McCartney and M. Teichmuller, “Classification of coals according to degree of coalification by reflectance of the vitrinite component,” Fuel, Vol. 51, pp. 64-68, 1972.
  16. P. K. Mukhopahyay, “Maturation of organic matter as revealed by microscopic methods: Applications and limitations of vitrinite reflectance, and continuous spectral and pulsed laser fluorescence spectroscopy, “in Diagenesis, III. Developments in Sedimentology, Vol 47, pp. 435-510, 1992.
  17. K. E. Peters, C. C. Walters, J. M. Moldowan, The Biomarker Guide, Cambridge University Press, 2005, p. 1155.
  18. J. L. Warner, D. K. Baskin, R. J. Hwang, R. M. K. Carlson, M. E. Clark, Geochemical Evidence for Two Stages of Hydrocarbon Emplacement and the Origin of Solid Bitumen in the Giant Tengiz Field, Kazakhstan, in P. O. Yilmaz and G. H. Isaksen, eds., Oil and gas of the Greater Caspian area: AAPG Studies in Geology 55, 2007, pp. 165-169.
  19. M. L. Bordenave, Applied Petroleum Geochemistry, Editions Technip, Paris, 1993, pp. 106, 159.