Quadratic assignment problem

Last updated

The quadratic assignment problem (QAP) is one of the fundamental combinatorial optimization problems in the branch of optimization or operations research in mathematics, from the category of the facilities location problems first introduced by Koopmans and Beckmann. [1]

Contents

The problem models the following real-life problem:

There are a set of n facilities and a set of n locations. For each pair of locations, a distance is specified and for each pair of facilities a weight or flow is specified (e.g., the amount of supplies transported between the two facilities). The problem is to assign all facilities to different locations with the goal of minimizing the sum of the distances multiplied by the corresponding flows.

Intuitively, the cost function encourages facilities with high flows between each other to be placed close together.

The problem statement resembles that of the assignment problem, except that the cost function is expressed in terms of quadratic inequalities, hence the name.

Formal mathematical definition

The formal definition of the quadratic assignment problem is as follows:

Given two sets, P ("facilities") and L ("locations"), of equal size, together with a weight function w : P×P R and a distance function d : L×L R . Find the bijection f : PL ("assignment") such that the cost function:
is minimized.

Usually weight and distance functions are viewed as square real-valued matrices, so that the cost function is written down as:

In matrix notation:

where is the set of permutation matrices, is the weight matrix and is the distance matrix.

Computational complexity

The problem is NP-hard, so there is no known algorithm for solving this problem in polynomial time, and even small instances may require long computation time. It was also proven that the problem does not have an approximation algorithm running in polynomial time for any (constant) factor, unless P = NP. [2] The travelling salesman problem (TSP) may be seen as a special case of QAP if one assumes that the flows connect all facilities only along a single ring, all flows have the same non-zero (constant) value and all distances are equal to the respective distances of the TSP instance. Many other problems of standard combinatorial optimization problems may be written in this form.

Applications

In addition to the original plant location formulation, QAP is a mathematical model for the problem of placement of interconnected electronic components onto a printed circuit board or on a microchip, which is part of the place and route stage of computer aided design in the electronics industry.

The QAP has also been used to model the cost of character placement on a keyboard. In this case, the locations are keys on the keyboard and their pairwise distances correspond to the time required to press a given pair of keys. The facilities are characters and their weights are proportional to how often the given pair of characters occur in a text corpus. This type of QAP model was used in the design of the French keyboard standard (NF Z71-300). [3]

See also

Related Research Articles

<span class="mw-page-title-main">Travelling salesman problem</span> NP-hard problem in combinatorial optimization

The travelling salesman problem, also known as the travelling salesperson problem (TSP), asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in theoretical computer science and operations research.

Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions. Specifically, one seeks to optimize a multivariate quadratic function subject to linear constraints on the variables. Quadratic programming is a type of nonlinear programming.

<span class="mw-page-title-main">Linear programming</span> Method to solve optimization problems

Linear programming (LP), also called linear optimization, is a method to achieve the best outcome in a mathematical model whose requirements and objective are represented by linear relationships. Linear programming is a special case of mathematical programming.

<span class="mw-page-title-main">Mathematical optimization</span> Study of mathematical algorithms for optimization problems

Mathematical optimization or mathematical programming is the selection of a best element, with regard to some criteria, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.

<span class="mw-page-title-main">Assignment problem</span> Combinatorial optimization problem

The assignment problem is a fundamental combinatorial optimization problem. In its most general form, the problem is as follows:

<span class="mw-page-title-main">Combinatorial optimization</span> Subfield of mathematical optimization

Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, where the set of feasible solutions is discrete or can be reduced to a discrete set. Typical combinatorial optimization problems are the travelling salesman problem ("TSP"), the minimum spanning tree problem ("MST"), and the knapsack problem. In many such problems, such as the ones previously mentioned, exhaustive search is not tractable, and so specialized algorithms that quickly rule out large parts of the search space or approximation algorithms must be resorted to instead.

Branch and bound is a method for solving optimization problems by breaking them down into smaller sub-problems and using a bounding function to eliminate sub-problems that cannot contain the optimal solution. It is an algorithm design paradigm for discrete and combinatorial optimization problems, as well as mathematical optimization. A branch-and-bound algorithm consists of a systematic enumeration of candidate solutions by means of state space search: the set of candidate solutions is thought of as forming a rooted tree with the full set at the root. The algorithm explores branches of this tree, which represent subsets of the solution set. Before enumerating the candidate solutions of a branch, the branch is checked against upper and lower estimated bounds on the optimal solution, and is discarded if it cannot produce a better solution than the best one found so far by the algorithm.

Convex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets. Many classes of convex optimization problems admit polynomial-time algorithms, whereas mathematical optimization is in general NP-hard.

In mathematical optimization, constrained optimization is the process of optimizing an objective function with respect to some variables in the presence of constraints on those variables. The objective function is either a cost function or energy function, which is to be minimized, or a reward function or utility function, which is to be maximized. Constraints can be either hard constraints, which set conditions for the variables that are required to be satisfied, or soft constraints, which have some variable values that are penalized in the objective function if, and based on the extent that, the conditions on the variables are not satisfied.

In computational complexity theory, Polynomial Local Search (PLS) is a complexity class that models the difficulty of finding a locally optimal solution to an optimization problem. The main characteristics pls take it

of problems that lie in PLS are that the cost of a solution can be calculated in polynomial time and the neighborhood of a solution can be searched in polynomial time. Therefore it is possible to verify whether or not a solution is a local optimum in polynomial time.

The theory of optimal control is concerned with operating a dynamic system at minimum cost. The case where the system dynamics are described by a set of linear differential equations and the cost is described by a quadratic function is called the LQ problem. One of the main results in the theory is that the solution is provided by the linear–quadratic regulator (LQR), a feedback controller whose equations are given below.

Stress majorization is an optimization strategy used in multidimensional scaling (MDS) where, for a set of -dimensional data items, a configuration of points in -dimensional space is sought that minimizes the so-called stress function . Usually is or , i.e. the matrix lists points in or dimensional Euclidean space so that the result may be visualised. The function is a cost or loss function that measures the squared differences between ideal distances and actual distances in r-dimensional space. It is defined as:

The study of facility location problems (FLP), also known as location analysis, is a branch of operations research and computational geometry concerned with the optimal placement of facilities to minimize transportation costs while considering factors like avoiding placing hazardous materials near housing, and competitors' facilities. The techniques also apply to cluster analysis.

Quadratic unconstrained binary optimization (QUBO), also known as unconstrained binary quadratic programming (UBQP), is a combinatorial optimization problem with a wide range of applications from finance and economics to machine learning. QUBO is an NP hard problem, and for many classical problems from theoretical computer science, like maximum cut, graph coloring and the partition problem, embeddings into QUBO have been formulated. Embeddings for machine learning models include support-vector machines, clustering and probabilistic graphical models. Moreover, due to its close connection to Ising models, QUBO constitutes a central problem class for adiabatic quantum computation, where it is solved through a physical process called quantum annealing.

In mathematics, the quadratic bottleneck assignment problem (QBAP) is one of the fundamental combinatorial optimization problems in the branch of optimization or operations research, from the category of the facilities location problems.

In data mining and machine learning, kq-flats algorithm is an iterative method which aims to partition m observations into k clusters where each cluster is close to a q-flat, where q is a given integer.

The quadratic knapsack problem (QKP), first introduced in 19th century, is an extension of knapsack problem that allows for quadratic terms in the objective function: Given a set of items, each with a weight, a value, and an extra profit that can be earned if two items are selected, determine the number of items to include in a collection without exceeding capacity of the knapsack, so as to maximize the overall profit. Usually, quadratic knapsack problems come with a restriction on the number of copies of each kind of item: either 0, or 1. This special type of QKP forms the 0-1 quadratic knapsack problem, which was first discussed by Gallo et al. The 0-1 quadratic knapsack problem is a variation of knapsack problems, combining the features of unbounded knapsack problem, 0-1 knapsack problem and quadratic knapsack problem.

Quantum optimization algorithms are quantum algorithms that are used to solve optimization problems. Mathematical optimization deals with finding the best solution to a problem from a set of possible solutions. Mostly, the optimization problem is formulated as a minimization problem, where one tries to minimize an error which depends on the solution: the optimal solution has the minimal error. Different optimization techniques are applied in various fields such as mechanics, economics and engineering, and as the complexity and amount of data involved rise, more efficient ways of solving optimization problems are needed. Quantum computing may allow problems which are not practically feasible on classical computers to be solved, or suggest a considerable speed up with respect to the best known classical algorithm.

Graph cut optimization is a combinatorial optimization method applicable to a family of functions of discrete variables, named after the concept of cut in the theory of flow networks. Thanks to the max-flow min-cut theorem, determining the minimum cut over a graph representing a flow network is equivalent to computing the maximum flow over the network. Given a pseudo-Boolean function , if it is possible to construct a flow network with positive weights such that

Quadratic pseudo-Boolean optimisation (QPBO) is a combinatorial optimization method for minimizing quadratic pseudo-Boolean functions in the form

References

  1. Koopmans TC, Beckmann M (1957). Assignment problems and the location of economic activities. Econometrica 25(1):53-76
  2. Sahni, Sartaj; Gonzalez, Teofilo (July 1976). "P-Complete Approximation Problems". Journal of the ACM. 23 (3): 555–565. doi:10.1145/321958.321975. hdl: 10338.dmlcz/103883 .
  3. John, Maximilian; Karrenbauer, Andreas (2019). "Dynamic Sparsification for Quadratic Assignment Problems". Mathematical Optimization Theory and Operations Research (PDF). Vol. 11548. Cham: Springer International Publishing. p. 232–246. doi:10.1007/978-3-030-22629-9_17. ISBN   978-3-030-22628-2.

Other sources