Quasi-polynomial time

Last updated

In computational complexity theory and the analysis of algorithms, an algorithm is said to take quasi-polynomial time if its time complexity is quasi-polynomially bounded. That is, there should exist a constant such that the worst-case running time of the algorithm, on inputs of size , has an upper bound of the form

Contents

The decision problems with quasi-polynomial time algorithms are natural candidates for being NP-intermediate, neither having polynomial time nor likely to be NP-hard.

Complexity class

The complexity class QP consists of all problems that have quasi-polynomial time algorithms. It can be defined in terms of DTIME as follows. [1]

Examples

An early example of a quasi-polynomial time algorithm was the Adleman–Pomerance–Rumely primality test; [2] however, the problem of testing whether a number is a prime number has subsequently been shown to have a polynomial time algorithm, the AKS primality test. [3]

In some cases, quasi-polynomial time bounds can be proven to be optimal under the exponential time hypothesis or a related computational hardness assumption. For instance, this is true for finding the largest disjoint subset of a collection of unit disks in the hyperbolic plane, [4] and for finding a graph with the fewest vertices that does not appear as an induced subgraph of a given graph. [5]

Other problems for which the best known algorithm takes quasi-polynomial time include:

Problems for which a quasi-polynomial time algorithm has been announced but not fully published include:

In approximation algorithms

Quasi-polynomial time has also been used to study approximation algorithms. In particular, a quasi-polynomial-time approximation scheme (QPTAS) is a variant of a polynomial-time approximation scheme whose running time is quasi-polynomial rather than polynomial. Problems with a QPTAS include minimum-weight triangulation, [14] and finding the maximum clique on the intersection graph of disks. [15]

More strongly, the problem of finding an approximate Nash equilibrium has a QPTAS, but cannot have a PTAS under the exponential time hypothesis. [16]

Related Research Articles

<span class="mw-page-title-main">Clique problem</span> Task of computing complete subgraphs

In computer science, the clique problem is the computational problem of finding cliques in a graph. It has several different formulations depending on which cliques, and what information about the cliques, should be found. Common formulations of the clique problem include finding a maximum clique, finding a maximum weight clique in a weighted graph, listing all maximal cliques, and solving the decision problem of testing whether a graph contains a clique larger than a given size.

<span class="mw-page-title-main">Time complexity</span> Estimate of time taken for running an algorithm

In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor.

<span class="mw-page-title-main">Graph coloring</span> Methodic assignment of colors to elements of a graph

In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color.

<span class="mw-page-title-main">Independent set (graph theory)</span> Unrelated vertices in graphs

In graph theory, an independent set, stable set, coclique or anticlique is a set of vertices in a graph, no two of which are adjacent. That is, it is a set of vertices such that for every two vertices in , there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in . A set is independent if and only if it is a clique in the graph's complement. The size of an independent set is the number of vertices it contains. Independent sets have also been called "internally stable sets", of which "stable set" is a shortening.

<span class="mw-page-title-main">Chordal graph</span> Graph where all long cycles have a chord

In the mathematical area of graph theory, a chordal graph is one in which all cycles of four or more vertices have a chord, which is an edge that is not part of the cycle but connects two vertices of the cycle. Equivalently, every induced cycle in the graph should have exactly three vertices. The chordal graphs may also be characterized as the graphs that have perfect elimination orderings, as the graphs in which each minimal separator is a clique, and as the intersection graphs of subtrees of a tree. They are sometimes also called rigid circuit graphs or triangulated graphs.

In graph theory, a domatic partition of a graph is a partition of into disjoint sets , ,..., such that each Vi is a dominating set for G. The figure on the right shows a domatic partition of a graph; here the dominating set consists of the yellow vertices, consists of the green vertices, and consists of the blue vertices.

<span class="mw-page-title-main">Maximal independent set</span> Independent set which is not a subset of any other independent set

In graph theory, a maximal independent set (MIS) or maximal stable set is an independent set that is not a subset of any other independent set. In other words, there is no vertex outside the independent set that may join it because it is maximal with respect to the independent set property.

<span class="mw-page-title-main">Feedback arc set</span> Edges that hit all cycles in a graph

In graph theory and graph algorithms, a feedback arc set or feedback edge set in a directed graph is a subset of the edges of the graph that contains at least one edge out of every cycle in the graph. Removing these edges from the graph breaks all of the cycles, producing an acyclic subgraph of the given graph, often called a directed acyclic graph. A feedback arc set with the fewest possible edges is a minimum feedback arc set and its removal leaves a maximum acyclic subgraph; weighted versions of these optimization problems are also used. If a feedback arc set is minimal, meaning that removing any edge from it produces a subset that is not a feedback arc set, then it has an additional property: reversing all of its edges, rather than removing them, produces a directed acyclic graph.

The graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic.

In computational complexity theory, a computational hardness assumption is the hypothesis that a particular problem cannot be solved efficiently. It is not known how to prove (unconditional) hardness for essentially any useful problem. Instead, computer scientists rely on reductions to formally relate the hardness of a new or complicated problem to a computational hardness assumption about a problem that is better-understood.

<span class="mw-page-title-main">Triangle-free graph</span> Graph without triples of adjacent vertices

In the mathematical area of graph theory, a triangle-free graph is an undirected graph in which no three vertices form a triangle of edges. Triangle-free graphs may be equivalently defined as graphs with clique number ≤ 2, graphs with girth ≥ 4, graphs with no induced 3-cycle, or locally independent graphs.

<span class="mw-page-title-main">Boxicity</span> Smallest dimension where a graph can be represented as an intersection graph of boxes

In graph theory, boxicity is a graph invariant, introduced by Fred S. Roberts in 1969.

In graph theory, a clique cover or partition into cliques of a given undirected graph is a partition of the vertices into cliques, subsets of vertices within which every two vertices are adjacent. A minimum clique cover is a clique cover that uses as few cliques as possible. The minimum k for which a clique cover exists is called the clique cover number of the given graph.

In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph. A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or by the sum of the weights of its edges. In contrast to the shortest path problem, which can be solved in polynomial time in graphs without negative-weight cycles, the longest path problem is NP-hard and the decision version of the problem, which asks whether a path exists of at least some given length, is NP-complete. This means that the decision problem cannot be solved in polynomial time for arbitrary graphs unless P = NP. Stronger hardness results are also known showing that it is difficult to approximate. However, it has a linear time solution for directed acyclic graphs, which has important applications in finding the critical path in scheduling problems.

In graph theory, the tree-depth of a connected undirected graph is a numerical invariant of , the minimum height of a Trémaux tree for a supergraph of . This invariant and its close relatives have gone under many different names in the literature, including vertex ranking number, ordered chromatic number, and minimum elimination tree height; it is also closely related to the cycle rank of directed graphs and the star height of regular languages. Intuitively, where the treewidth of a graph measures how far it is from being a tree, this parameter measures how far a graph is from being a star.

In computational complexity theory, the exponential time hypothesis is an unproven computational hardness assumption that was formulated by Impagliazzo & Paturi (1999). It states that satisfiability of 3-CNF Boolean formulas cannot be solved in subexponential time, . More precisely, the usual form of the hypothesis asserts the existence of a number such that all algorithms that correctly solve this problem require time at least . The exponential time hypothesis, if true, would imply that P ≠ NP, but it is a stronger statement. It implies that many computational problems are equivalent in complexity, in the sense that if one of them has a subexponential time algorithm then they all do, and that many known algorithms for these problems have optimal or near-optimal time complexity.

In the mathematical field of graph theory, the intersection number of a graph is the smallest number of elements in a representation of as an intersection graph of finite sets. In such a representation, each vertex is represented as a set, and two vertices are connected by an edge whenever their sets have a common element. Equivalently, the intersection number is the smallest number of cliques needed to cover all of the edges of .

<span class="mw-page-title-main">Dense subgraph</span> Highly connected subgraph

In graph theory and computer science, a dense subgraph is a subgraph with many edges per vertex. This is formalized as follows: let G = (V, E) be an undirected graph and let S = (VS, ES) be a subgraph of G. Then the density of S is defined to be:

<span class="mw-page-title-main">Planted clique</span> Complete subgraph added to a random graph

In computational complexity theory, a planted clique or hidden clique in an undirected graph is a clique formed from another graph by selecting a subset of vertices and adding edges between each pair of vertices in the subset. The planted clique problem is the algorithmic problem of distinguishing random graphs from graphs that have a planted clique. This is a variation of the clique problem; it may be solved in quasi-polynomial time but is conjectured not to be solvable in polynomial time for intermediate values of the clique size. The conjecture that no polynomial time solution exists is called the planted clique conjecture; it has been used as a computational hardness assumption.

<span class="mw-page-title-main">Matroid parity problem</span> Largest independent set of paired elements

In combinatorial optimization, the matroid parity problem is a problem of finding the largest independent set of paired elements in a matroid. The problem was formulated by Lawler (1976) as a common generalization of graph matching and matroid intersection. It is also known as polymatroid matching, or the matchoid problem.

References

  1. Complexity Zoo : Class QP: Quasipolynomial-Time
  2. Adleman, Leonard M.; Pomerance, Carl; Rumely, Robert S. (1983), "On distinguishing prime numbers from composite numbers", Annals of Mathematics , 117 (1): 173–206, doi:10.2307/2006975, JSTOR   2006975
  3. Agrawal, Manindra; Kayal, Neeraj; Saxena, Nitin (2004), "PRIMES is in P" (PDF), Annals of Mathematics , 160 (2): 781–793, doi:10.4007/annals.2004.160.781, JSTOR   3597229
  4. Kisfaludi-Bak, Sándor (2020), "Hyperbolic intersection graphs and (quasi)-polynomial time", in Chawla, Shuchi (ed.), Proceedings of the 31st Annual ACM–SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5–8, 2020, pp. 1621–1638, arXiv: 1812.03960 , doi:10.1137/1.9781611975994.100
  5. Eppstein, David; Lincoln, Andrea; Williams, Virginia Vassilevska (2023), "Quasipolynomiality of the smallest missing induced subgraph", Journal of Graph Algorithms and Applications , 27 (5): 329–339, arXiv: 2306.11185 , doi: 10.7155/jgaa.00625
  6. Hazan, Elad; Krauthgamer, Robert (2011), "How hard is it to approximate the best Nash equilibrium?", SIAM Journal on Computing , 40 (1): 79–91, CiteSeerX   10.1.1.511.4422 , doi:10.1137/090766991, MR   2765712
  7. Eiter, Thomas; Makino, Kazuhisa; Gottlob, Georg (2008), "Computational aspects of monotone dualization: a brief survey", Discrete Applied Mathematics , 156 (11): 2035–2049, doi: 10.1016/j.dam.2007.04.017 , MR   2437000
  8. Calude, Cristian S.; Jain, Sanjay; Khoussainov, Bakhadyr; Li, Wei; Stephan, Frank (2022), "Deciding parity games in quasi-polynomial time", SIAM Journal on Computing , 51 (2): STOC17-152–STOC17-188, doi:10.1137/17M1145288, MR   4413072
  9. IPEC Nerode Prize, EATCS, retrieved 2023-12-03
  10. Papadimitriou, Christos H.; Yannakakis, Mihalis (1996), "On limited nondeterminism and the complexity of the V-C dimension", Journal of Computer and System Sciences , 53 (2): 161–170, doi: 10.1006/jcss.1996.0058 , MR   1418886
  11. Megiddo, Nimrod; Vishkin, Uzi (1988), "On finding a minimum dominating set in a tournament", Theoretical Computer Science , 61 (2–3): 307–316, doi:10.1016/0304-3975(88)90131-4, MR   0980249
  12. Klarreich, Erica (January 14, 2017), "Graph isomorphism vanquished — again", Quanta Magazine
  13. Marc Lackenby announces a new unknot recognition algorithm that runs in quasi-polynomial time, Mathematical Institute, University of Oxford, 2021-02-03, retrieved 2021-02-03
  14. Remy, Jan; Steger, Angelika (2009), "A quasi-polynomial time approximation scheme for minimum weight triangulation", Journal of the ACM , 56 (3), Article A15, doi:10.1145/1516512.1516517
  15. Bonnet, Édouard; Giannopoulos, Panos; Kim, Eun Jung; Rzazewski, Pawel; Sikora, Florian (2018), "QPTAS and subexponential algorithm for maximum clique on disk graphs", in Speckmann, Bettina; Tóth, Csaba D. (eds.), 34th International Symposium on Computational Geometry, SoCG 2018, June 11–14, 2018, Budapest, Hungary, LIPIcs, vol. 99, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, pp. 12:1–12:15, doi:10.4230/LIPICS.SOCG.2018.12
  16. Braverman, Mark; Kun-Ko, Young; Weinstein, Omri (2015), "Approximating the best Nash equilibrium in -time breaks the Exponential Time Hypothesis", in Indyk, Piotr (ed.), Proceedings of the 26th Annual ACM–SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4–6, 2015, pp. 970–982, doi:10.1137/1.9781611973730.66