RARAF

Last updated
RARAF
Established1984 (at its current location)
Research type Radiobiology
Field of research
Microbeam
Director David J. Brenner
AddressP.O. Box 21
Location Irvington, New York
Affiliations Columbia University
National Institutes of Health
National Institute of Biomedical Imaging and Bioengineering
Website www.raraf.org

The Radiological Research Accelerator Facility (RARAF), [1] located on the Columbia University Nevis Laboratories campus in Irvington, New York is a National Institute of Biomedical Imaging and Bioengineering biotechnology resource center (P41) [2] specializing in microbeam technology. The facility is currently built around a 5MV Singletron, a particle accelerator similar to a Van de Graaff.

Contents

The RARAF microbeam can produce with high accuracy and precision:

History

RARAF was conceived by Victor P. Bond and Harald H. Rossi in the late 1960s . Their aim was to provide a source of monoenergetic neutrons designed and operated specifically for studies in radiation biology, dosimetry, and microdosimetry. The facility was built around the 4 MV Van de Graaff particle accelerator that originally served as the injector for the Cosmotron, a 2 GeV accelerator operated at Brookhaven National Laboratory (BNL) in the 1950s and 1960s.

RARAF operated at BNL from 1967 until 1980, when it was dismantled to make room for the ISABELLE project, a very large accelerator which was never completed. A new site for RARAF was found at the Nevis Laboratories of Columbia University where its cyclotron was being disassembled. The U.S. Department of Energy provided funds to move RARAF to Nevis Laboratories and reassemble it in a new multi-level facility constructed within the cyclotron building. The new RARAF has been routinely operating for research since mid-1984.

RARAF was one of the first three microbeam facilities [3] to be built, and it is the only original microbeam facility still in operation.

In 2006 the Van de Graaff was replaced by a 5 MV Singletron from High Voltage Engineering Europa (HVEE) in the Netherlands.

Microbeam Development

As an NIBIB biotechnology resource center, RARAF is dedicated to developing and improving microbeam technologies. Developments focus on adding and improving imaging techniques to the existing microbeam. Neutron and x-ray microbeams are also in development. Some examples of microbeam developments are listed below.

Microbeam lens

In order to focus charged particles in the RARAF microbeam, an electrostatic lens consisting of six quadrupole arranged in two triplets with each successive quadrupole rotated by 90° around its axis, is used. Each quadrupole triplet consists of 4 ceramic rods on which gold electrodes were plated. This design ensures alignment of the three quadrupoles in the triplet and allows a small pole-gap and better focusing properties.

Subcellular targeting

Due to the nature of the RARAF microbeam, sub-cellular targets such as the cell nucleus or the cell cytoplasm have been possible for years. With a sub-micrometre diameter beam routinely available, additional targets within cellular systems are accessible. For instance, preliminary radiation experiments that target mitochondria have been conducted on small airway epithelial cells. [1]

Point and shoot microbeam

During microbeam irradiation, cells to be irradiated are moved to the beam position using a high-speed high-resolution three-axis piezo-electric stage. [4] In order to further reduce targeting time, and making use of the fact that a focused microbeam, unlike a collimated one, is not restricted to a single location on the accelerator exit window, we have implemented a magnetic-coil-based fast deflector, placed between the two quadrupole triplets, that allows deflecting the beam to any position in the field of view of the microscope used to observe the cells during irradiation. Moving the beam to the cell position magnetically can be performed much faster than moving the stage. The deflector used in this system can move the beam to as many as 1000 separate locations per second—more than 5 times the speed of movement of the stage—dramatically reducing the irradiation time.

X-ray microbeam

The RARAF microbeam is adding an x-ray microbeam using characteristic Kα x rays from Ti. The x rays will be generated using an electrostatic lens system to focus protons onto a thick Ti target. The x rays generated are demagnified using a zone plate. By using the already focused proton microbeam to generate characteristic x rays, it is possible to obtain a nearly monochromatic x-ray beam (very low bremsstrahlung yield) and a reasonably small x-ray source (~20 µm diameter), reducing the requirements on the zone plate.

There are considerable benefits in using soft x-ray microbeams for both mechanistic and risk estimation end-points. The higher spatial resolution achievable with modern state-of-the-art x-ray optics elements combined with the localized damage produced by the absorption of low energy photons (~1 keV) represents a unique tool to investigate the radio-sensitivity of sub-cellular and eventually sub-nuclear targets. Also, since low-energy x rays undergo very little scattering, by using x rays with an energy of ~5 keV it will be possible to irradiate with micrometre precision individual cells and/or parts of cells up to a few hundred micrometres deep inside a tissue sample in order to investigate the relevance of effects such as the bystander effect in 3-D structured cell systems.

Microbeam experiments

RARAF is also a user facility for biologists interested in performing microbeam studies. The prominent theme of research undertaken using the RARAF microbeam is damage signal transduction, both within cells and between cells, which is of interest due in part to the discovery of the radiation-induced bystander effect. Early inter-cellular signal transduction studies were done with cells plated in 2D monolayers. More recently due to the significance of the extracellular environment and technological developments, studies involving 3D tissue systems, [5] [6] including living organisms, [7] have become more common.

Applications of Microfluidics

RARAF is developing various microfluidic devices which add to the irradiation capabilities of the facility. The precision control and manipulation of fluids and biological materials afforded by microfluidics are ideal to interface with the microbeam. Additional microfluidic systems beyond those listed here are currently under development.

Flow and Shoot

The Flow and Shoot microbeam system allows for controlled transport of cells through a microfluidic channel which intersects with the point and shoot microbeam. [8] A high speed camera allows for dynamic targeting of the flowing cells with flow rates of 1–10 mm/s, allowing for total throughput upwards of 100,000 cells per hour.

Optofluidic Cell Manipulation

An optoelectronic tweezer platform has been interfaced with the RARAF microbeam. [9] This allows precision manipulation of cell position before, during, and after irradiation.

Caenorhabditis elegans immobilization

RARAF has implemented a microfluidic platform for the immobilization of Caenorhabditis elegans during microbeam irradiation. [10] The device avoids the use of anesthetics that might interfere with normal physiological processes by capturing the C. elegans worms in tapered microfluidic channels. It is possible to target specific regions of interest within C. elegans using this technology.

Other Technologies

Broad beam irradiations are also possible. Particles with linear energy transfer (LET) between 10 and 200 keV/μm are available utilizing beams of protons, deuterons, helium-3, and helium-4 ions. Additionally, energetic and thermal neutrons and x rays can be used in broad beam irradiations.

Training Scientists

RARAF has trained scientists at all levels: high school students, undergraduates, graduate students, post docs, and senior scientists. The lab estimates that about 45 scientists have received training in microbeam physics and or biology in the past 5 years.

RARAF is an active participant in the Columbia University Research Experience for Undergraduates program.

In addition, RARAF has become a de facto training center for developers of new microbeams. A virtual microbeam training course, complete with videos and handouts, is also available online.

Related Research Articles

DESY German national research center

The Deutsches Elektronen-Synchrotron commonly referred to by the abbreviation DESY, is a national research center in Germany that operates particle accelerators used to investigate the structure of matter. It conducts a broad spectrum of inter-disciplinary scientific research in three main areas: particle and high energy physics; photon science; and the development, construction and operation of particle accelerators. Its name refers to its first project, an electron synchrotron. DESY is publicly financed by the Federal Republic of Germany, the States of Germany, and the German Research Foundation (DFG). DESY is a member of the Helmholtz Association and operates at sites in Hamburg and Zeuthen.

External beam radiotherapy Treatment of cancer with ionized radiation

External beam radiotherapy (EBRT) is the most common form of radiotherapy. The patient sits or lies on a couch and an external source of ionizing radiation is pointed at a particular part of the body. In contrast to brachytherapy and unsealed source radiotherapy, in which the radiation source is inside the body, external beam radiotherapy directs the radiation at the tumour from outside the body. Orthovoltage ("superficial") X-rays are used for treating skin cancer and superficial structures. Megavoltage X-rays are used to treat deep-seated tumours, whereas megavoltage electron beams are typically used to treat superficial lesions extending to a depth of approximately 5 cm. X-rays and electron beams are by far the most widely used sources for external beam radiotherapy. A small number of centers operate experimental and pilot programs employing beams of heavier particles, particularly protons, owing to the rapid dropoff in absorbed dose beneath the depth of the target.

Linear particle accelerator Type of particle accelerator

A linear particle accelerator is a type of particle accelerator that accelerates charged subatomic particles or ions to a high speed by subjecting them to a series of oscillating electric potentials along a linear beamline. The principles for such machines were proposed by Gustav Ising in 1924, while the first machine that worked was constructed by Rolf Widerøe in 1928 at the RWTH Aachen University. Linacs have many applications: they generate X-rays and high energy electrons for medicinal purposes in radiation therapy, serve as particle injectors for higher-energy accelerators, and are used directly to achieve the highest kinetic energy for light particles for particle physics.

Beamline Trajectory of a beam of accelerated particles

In accelerator physics, a beamline refers to the trajectory of the beam of accelerated particles, including the overall construction of the path segment along a specific path of an accelerator facility. This part is either

Synchrotron Type of cyclic particle accelerator

A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed path increases with time during the accelerating process, being synchronized to the increasing kinetic energy of the particles. The synchrotron is one of the first accelerator concepts to enable the construction of large-scale facilities, since bending, beam focusing and acceleration can be separated into different components. The most powerful modern particle accelerators use versions of the synchrotron design. The largest synchrotron-type accelerator, also the largest particle accelerator in the world, is the 27-kilometre-circumference (17 mi) Large Hadron Collider (LHC) near Geneva, Switzerland, built in 2008 by the European Organization for Nuclear Research (CERN). It can accelerate beams of protons to an energy of 6.5 teraelectronvolts (TeV).

Paul Scherrer Institute Swiss federal research institute

The Paul Scherrer Institute (PSI) is a multi-disciplinary research institute for natural and engineering sciences in Switzerland. It is located in the Canton of Aargau in the municipalities Villigen and Würenlingen on either side of the River Aare, and covers an area over 35 hectares in size. Like ETH Zurich and EPFL, PSI belongs to the Swiss Federal Institutes of Technology Domain of the Swiss Confederation. The PSI employs around 2,100 people. It conducts basic and applied research in the fields of matter and materials, human health, and energy and the environment. About 37% of PSI’s research activities focus on material sciences, 24% on life sciences, 19% on general energy, 11% on nuclear energy and safety, and 9% on particle physics.

Proton therapy Medical Procedure

In the field of medical treatment, proton therapy, or proton radiotherapy, is a type of particle therapy that uses a beam of protons to irradiate diseased tissue, most often to treat cancer. The chief advantage of proton therapy over other types of external beam radiotherapy is that the dose of protons is deposited over a narrow range of depth, which results in minimal entry, exit, or scattered radiation dose to healthy nearby tissues.

Radiosurgery Surgical Specialty

Radiosurgery is surgery using radiation, that is, the destruction of precisely selected areas of tissue using ionizing radiation rather than excision with a blade. Like other forms of radiation therapy, it is usually used to treat cancer. Radiosurgery was originally defined by the Swedish neurosurgeon Lars Leksell as "a single high dose fraction of radiation, stereotactically directed to an intracranial region of interest".

A particle beam is a stream of charged or neutral particles. In particle accelerators, these particles can move with a velocity close to the speed of light. There is a difference between the creation and control of charged particle beams and neutral particle beams, as only the first type can be manipulated to a sufficient extent by devices based on electromagnetism. The manipulation and diagnostics of charged particle beams at high kinetic energies using particle accelerators are main topics of accelerator physics.

Irradiation is the process by which an object is exposed to radiation. The exposure can originate from various sources, including natural sources. Most frequently the term refers to ionizing radiation, and to a level of radiation that will serve a specific purpose, rather than radiation exposure to normal levels of background radiation. The term irradiation usually excludes the exposure to non-ionizing radiation, such as infrared, visible light, microwaves from cellular phones or electromagnetic waves emitted by radio and TV receivers and power supplies.

Linear energy transfer

In dosimetry, linear energy transfer (LET) is the amount of energy that an ionizing particle transfers to the material traversed per unit distance. It describes the action of radiation into matter.

Fast neutron therapy

Fast neutron therapy utilizes high energy neutrons typically between 50 and 70 MeV to treat cancer. Most fast neutron therapy beams are produced by reactors, cyclotrons (d+Be) and linear accelerators. Neutron therapy is currently available in Germany, Russia, South Africa and the United States. In the United States, one treatment center is operational, in Seattle, Washington. The Seattle center uses a cyclotron which produces a proton beam impinging upon a beryllium target.

The radiation-induced bystander effect is the phenomenon in which unirradiated cells exhibit irradiated effects as a result of signals received from nearby irradiated cells. In November 1992, Hatsumi Nagasawa and John B. Little first reported this radiobiological phenomenon.

Particle therapy is a form of external beam radiotherapy using beams of energetic neutrons, protons, or other heavier positive ions for cancer treatment. The most common type of particle therapy as of 2012 is proton therapy.

Intraoperative electron radiation therapy is the application of electron radiation directly to the residual tumor or tumor bed during cancer surgery. Electron beams are useful for intraoperative radiation treatment because, depending on the electron energy, the dose falls off rapidly behind the target site, therefore sparing underlying healthy tissue.

Particle accelerator Research apparatus for particle physics

A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams.

A microbeam is a narrow beam of radiation, of micrometer or sub-micrometer dimensions. Together with integrated imaging techniques, microbeams allow precisely defined quantities of damage to be introduced at precisely defined locations. Thus, the microbeam is a tool for investigators to study intra- and inter-cellular mechanisms of damage signal transduction.

Neutron capture therapy of cancer Nonsurgical therapeutic modality for treating locally invasive malignant tumors

Neutron capture therapy (NCT) is a radio-therapeutic modality for treating locally invasive malignant tumors such as primary brain tumors, recurrent cancers of the head and neck region, and cutaneous and extracutaneous melanomas. It is a two-step procedure: first, the patient is injected with a tumor-localizing drug containing the non-radioactive isotope boron-10 (10B), which has a high propensity to capture low energy "thermal" neutrons. The neutron cross section of 10B is 1,000 times greater than that of the other elements, such as nitrogen, hydrogen, and oxygen, that are present in tissues. In the second step, the patient is radiated with epithermal neutrons, the sources of which in the past have been nuclear reactors and now are accelerators that produce higher energy epithermal neutrons. After losing energy as they penetrate tissue, the resultant low energy "thermal" neutrons are captured by the 10B atoms. The resulting decay reaction yields high-energy alpha particles that kill the cancer cells that have taken up sufficient quantities of 10B. All of the clinical experience to date with NCT has been with the non-radioactive isotope boron-10, and hence this radio-therapeutic modality is known as boron neutron capture therapy (BNCT). The use of another non-radioactive isotope, such as gadolinium (Gd), has been limited to experimental animal studies and has not been used clinically. BNCT has been evaluated clinically as an alternative to conventional radiation therapy for the treatment of malignant brain tumors such as glioblastomas, which presently are incurable, and more recently, locally advanced recurrent cancers of the head and neck region and, much less frequently, superficial melanomas primarily involving the skin and genital region.

The Sarayköy Nuclear Research and Training Center, known as SANAEM, is a nuclear research and training center of Turkey. The organization was established on July 1, 2005 as a subunit of Turkish Atomic Energy Administration at Kazan district in northwest of Ankara on an area of 42.3 ha.

In biochemistry, the oxygen effect refers to a tendency for increased radiosensitivity of free living cells and organisms in the presence of oxygen than in anoxic or hypoxic conditions, where the oxygen tension is less than 1% of atmospheric pressure.

References

  1. 1 2 http://www.raraf.org
  2. "NIBIB - Resources, P41 Biotech Resources by State". www.nibib.nih.gov. Archived from the original on 2006-09-29.
  3. B.D. Michael, M. Folkard and K.M. Prise. Meeting Report: Microbeam Probes of Cellular Radiation Response, 4th L.H. Gray Workshop, 8–10 July 1993. Int. J. Radiat. Biol.65:503-508 (1994). PMID   7908938
  4. Bigelow A, Garty G, Funayama T, Randers-Pehrson G, Brenner D, Geard C. Expanding the question-answering potential of single-cell microbeams at RARAF, USA. J Radiat Res (Tokyo).50 Suppl A:A21-8 (2009). PMID   19346682
  5. Belyakov OV et al. Biological effects in unirradiated human tissue induced by radiation damage up to 1 mm away. PNAS102:14203-8 (2005). PMID   1612670
  6. Sedelnikova OA et al. DNA double-strand breaks form in bystander cells after microbeam irradiation of three-dimensional human tissue models. '"Cancer Res.67:4295-302 (2007).
  7. Bertucci A, Pocock RD, Randers-Pehrson G, and Brenner DJ. Microbeam irradiation of the C. elegans nematode. J. Radiat. Res.50 Suppl A.:A49-54 (2009). PMID   19346684
  8. Garty G et al. Design of a novel flow-and-shoot microbeam. Radiat Prot Dosimetry143(2-4):344-348 (2011). PMC   3108275
  9. Grad M et al. Optofluidic cell manipulation for a biological microbeam. Rev. Sci. Instrum.84:014301 (2013). doi : 10.1063/1.4774043
  10. Buonanno M et al. Microbeam irradiation of C. elegans nematode in microfluidic channels. Radiation and environmental biophysics 1-7 (2013). doi : 10.1007/s00411-013-0485-6