RBM9

Last updated
RBFOX2
Protein RBM9 PDB 2cq3.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases RBFOX2 , FOX2, Fox-2, HNRBP2, HRNBP2, RBM9, RTA, dJ106I20.3, fxh, RNA binding protein, fox-1 homolog 2, RNA binding fox-1 homolog 2
External IDs OMIM: 612149 MGI: 1933973 HomoloGene: 49375 GeneCards: RBFOX2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)
RefSeq (protein)
Location (UCSC) Chr 22: 35.74 – 36.03 Mb Chr 15: 77.08 – 77.31 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

RNA binding motif protein 9 (RBM9), also known as Rbfox2, is a protein which in humans is encoded by the RBM9 gene. [5]

Function

Rbfox2 is one of several human genes similar to the C. elegans gene Fox-1. This gene encodes an RNA binding protein that is thought to be a key regulator of alternative splicing in the nervous system and other cell types. Rbfox2 and the related protein Rbfox1 bind to conserved (U)GCAUG RNA motifs in the introns adjacent to many alternatively spliced exons and promotes inclusion or exclusion of the alternative exon in mature transcripts. [6] [7] The protein also interacts with the estrogen receptor 1 transcription factor and regulates estrogen receptor 1 transcriptional activity. Multiple transcript variants encoding different isoforms have been found for this gene. [5]

Rbfox2, as determined by CLIP-seq, binds near alternatively spliced exons and regulates the inclusion or exclusion of exons during alternative splicing by binding in introns either downstream (inclusion) or upstream (exon skipping) of exons. Its presence is important for stem cell survival and knockdowns of Rbfox2 activate markers for apoptosis. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Exon</span> A region of a transcribed gene present in the final functional mRNA molecule

An exon is any part of a gene that will form a part of the final mature RNA produced by that gene after introns have been removed by RNA splicing. The term exon refers to both the DNA sequence within a gene and to the corresponding sequence in RNA transcripts. In RNA splicing, introns are removed and exons are covalently joined to one another as part of generating the mature RNA. Just as the entire set of genes for a species constitutes the genome, the entire set of exons constitutes the exome.

An intron is any nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word intron is derived from the term intragenic region, i.e., a region inside a gene. The term intron refers to both the DNA sequence within a gene and the corresponding RNA sequence in RNA transcripts. The non-intron sequences that become joined by this RNA processing to form the mature RNA are called exons.

<span class="mw-page-title-main">RNA splicing</span> Process in molecular biology

RNA splicing is a process in molecular biology where a newly-made precursor messenger RNA (pre-mRNA) transcript is transformed into a mature messenger RNA (mRNA). It works by removing all the introns and splicing back together exons. For nuclear-encoded genes, splicing occurs in the nucleus either during or immediately after transcription. For those eukaryotic genes that contain introns, splicing is usually needed to create an mRNA molecule that can be translated into protein. For many eukaryotic introns, splicing occurs in a series of reactions which are catalyzed by the spliceosome, a complex of small nuclear ribonucleoproteins (snRNPs). There exist self-splicing introns, that is, ribozymes that can catalyze their own excision from their parent RNA molecule. The process of transcription, splicing and translation is called gene expression, the central dogma of molecular biology.

<span class="mw-page-title-main">Alternative splicing</span> Process by which a gene can code for multiple proteins

Alternative splicing, or alternative RNA splicing, or differential splicing, is an alternative splicing process during gene expression that allows a single gene to code for multiple proteins. In this process, particular exons of a gene may be included within or excluded from the final, processed messenger RNA (mRNA) produced from that gene. This means the exons are joined in different combinations, leading to different (alternative) mRNA strands. Consequently, the proteins translated from alternatively spliced mRNAs usually contain differences in their amino acid sequence and, often, in their biological functions.

<span class="mw-page-title-main">SR protein</span>

SR proteins are a conserved family of proteins involved in RNA splicing. SR proteins are named because they contain a protein domain with long repeats of serine and arginine amino acid residues, whose standard abbreviations are "S" and "R" respectively. SR proteins are ~200-600 amino acids in length and composed of two domains, the RNA recognition motif (RRM) region and the RS domain. SR proteins are more commonly found in the nucleus than the cytoplasm, but several SR proteins are known to shuttle between the nucleus and the cytoplasm.

RNA-binding proteins are proteins that bind to the double or single stranded RNA in cells and participate in forming ribonucleoprotein complexes. RBPs contain various structural motifs, such as RNA recognition motif (RRM), dsRNA binding domain, zinc finger and others. They are cytoplasmic and nuclear proteins. However, since most mature RNA is exported from the nucleus relatively quickly, most RBPs in the nucleus exist as complexes of protein and pre-mRNA called heterogeneous ribonucleoprotein particles (hnRNPs). RBPs have crucial roles in various cellular processes such as: cellular function, transport and localization. They especially play a major role in post-transcriptional control of RNAs, such as: splicing, polyadenylation, mRNA stabilization, mRNA localization and translation. Eukaryotic cells express diverse RBPs with unique RNA-binding activity and protein–protein interaction. According to the Eukaryotic RBP Database (EuRBPDB), there are 2961 genes encoding RBPs in humans. During evolution, the diversity of RBPs greatly increased with the increase in the number of introns. Diversity enabled eukaryotic cells to utilize RNA exons in various arrangements, giving rise to a unique RNP (ribonucleoprotein) for each RNA. Although RBPs have a crucial role in post-transcriptional regulation in gene expression, relatively few RBPs have been studied systematically.It has now become clear that RNA–RBP interactions play important roles in many biological processes among organisms.

<span class="mw-page-title-main">TIA1</span> Mammalian protein found in Homo sapiens

TIA1 or Tia1 cytotoxic granule-associated rna binding protein is a 3'UTR mRNA binding protein that can bind the 5'TOP sequence of 5'TOP mRNAs. It is associated with programmed cell death (apoptosis) and regulates alternative splicing of the gene encoding the Fas receptor, an apoptosis-promoting protein. Under stress conditions, TIA1 localizes to cellular RNA-protein conglomerations called stress granules. It is encoded by the TIA1 gene.

<span class="mw-page-title-main">RBM8A</span> Protein-coding gene in the species Homo sapiens

RNA-binding protein 8A is a protein that in humans is encoded by the RBM8A gene.

<span class="mw-page-title-main">SON (gene)</span> Protein-coding gene in the species Homo sapiens

SON protein is a protein that in humans is encoded by the SON gene.

<span class="mw-page-title-main">TIAL1</span> Protein-coding gene in the species Homo sapiens

Nucleolysin TIAR is a protein that in humans is encoded by the TIAL1 gene.

<span class="mw-page-title-main">SFRS9</span> Protein-coding gene in the species Homo sapiens

Splicing factor, arginine/serine-rich 9, also known as SFRS9, is a human gene encoding an SR protein involved in splice site selection in alternative splicing.

<span class="mw-page-title-main">GRIK1</span> Protein-coding gene in the species Homo sapiens

Glutamate receptor, ionotropic, kainate 1, also known as GRIK1, is a protein that in humans is encoded by the GRIK1 gene.

<span class="mw-page-title-main">ALYREF</span> Protein-coding gene in the species Homo sapiens

Aly/REF export factor, also known as THO complex subunit 4 is a protein that in humans is encoded by the ALYREF gene.

<span class="mw-page-title-main">SYNE2</span> Protein-coding gene in the species Homo sapiens

Nesprin-2 is a protein that in humans is encoded by the SYNE2 gene. The human SYNE2 gene consists of 116 exons and encodes nesprin-2, a member of the nuclear envelope (NE) spectrin-repeat (nesprin) family. Nesprins are modular proteins with a central extended spectrin-repeat (SR) rod domain and a C-terminal Klarsicht/ANC-1/Syne homology (KASH) transmembrane domain, which acts as a NE-targeting motif. Nesprin-2 (Nesp2) binds to cytoplasmic F-actin, tethering the nucleus to the cytoskeleton and maintaining the structural integrity of the nucleus.

<span class="mw-page-title-main">RBM4</span> Protein-coding gene in the species Homo sapiens

RNA-binding protein 4 is a protein that in humans is encoded by the RBM4 gene.

<span class="mw-page-title-main">EIF4A3</span> Protein-coding gene in the species Homo sapiens

Eukaryotic initiation factor 4A-III is a protein that in humans is encoded by the EIF4A3 gene.

<span class="mw-page-title-main">RBFOX1</span> Protein-coding gene in the species Homo sapiens

Fox-1 homolog A, also known as ataxin 2-binding protein 1 (A2BP1) or hexaribonucleotide-binding protein 1 (HRNBP1) or RNA binding protein, fox-1 homolog (Rbfox1), is a protein that in humans is encoded by the RBFOX1 gene.

<span class="mw-page-title-main">CUGBP Elav-like family member 4</span> Protein-coding gene in the species Homo sapiens

CUGBP Elav-like family member 4 (CELF4) also known as bruno-like protein 4 (BRUNOL4) is a protein that in humans is encoded by the CELF4 gene.

<span class="mw-page-title-main">NeuN</span>

NeuN , a protein which is a homologue to the protein product of a sex-determining gene in Caenorhabditis elegans, is a neuronal nuclear antigen that is commonly used as a biomarker for neurons.

<span class="mw-page-title-main">Circular RNA</span> Type of RNA found in cells

Circular RNA is a type of single-stranded RNA which, unlike linear RNA, forms a covalently closed continuous loop. In circular RNA, the 3' and 5' ends normally present in an RNA molecule have been joined together. This feature confers numerous properties to circular RNA, many of which have only recently been identified.

References

  1. 1 2 3 ENSG00000100320 GRCh38: Ensembl release 89: ENSG00000277564, ENSG00000100320 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000033565 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: RBM9 RNA binding motif protein 9".
  6. Jin, Y. (2003-02-17). "A vertebrate RNA-binding protein Fox-1 regulates tissue-specific splicing via the pentanucleotide GCAUG". The EMBO Journal. 22 (4): 905–912. doi:10.1093/emboj/cdg089. ISSN   1460-2075. PMC   145449 . PMID   12574126.
  7. Ponthier, Julie L.; Schluepen, Christina; Chen, Weiguo; Lersch, Robert A.; Gee, Sherry L.; Hou, Victor C.; Lo, Annie J.; Short, Sarah A.; Chasis, Joel A.; Winkelmann, John C.; Conboy, John G. (2006-03-14). "Fox-2 Splicing Factor Binds to a Conserved Intron Motif to Promote Inclusion of Protein 4.1R Alternative Exon 16". Journal of Biological Chemistry. 281 (18): 12468–12474. doi: 10.1074/jbc.m511556200 . ISSN   0021-9258. PMID   16537540.
  8. Yeo GW, Coufal NG, Liang TY, Peng GE, Fu XD, Gage FH (February 2009). "An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells". Nature Structural & Molecular Biology. 16 (2): 130–137. doi:10.1038/nsmb.1545. PMC   2735254 . PMID   19136955.

Further reading