Recurrence quantification analysis

Last updated

Recurrence quantification analysis (RQA) is a method of nonlinear data analysis (cf. chaos theory) for the investigation of dynamical systems. It quantifies the number and duration of recurrences of a dynamical system presented by its phase space trajectory. [1]

Contents

Background

The recurrence quantification analysis (RQA) was developed in order to quantify differently appearing recurrence plots (RPs), based on the small-scale structures therein. [2] Recurrence plots are tools which visualise the recurrence behaviour of the phase space trajectory of dynamical systems: [3]

,

where is the Heaviside function and a predefined tolerance.

Recurrence plots mostly contain single dots and lines which are parallel to the mean diagonal (line of identity, LOI) or which are vertical/horizontal. Lines parallel to the LOI are referred to as diagonal lines and the vertical structures as vertical lines. Because an RP is usually symmetric, horizontal and vertical lines correspond to each other, and, hence, only vertical lines are considered. The lines correspond to a typical behaviour of the phase space trajectory: whereas the diagonal lines represent such segments of the phase space trajectory which run parallel for some time, the vertical lines represent segments which remain in the same phase space region for some time. [1]

If only a univariate time series is available, the phase space can be reconstructed by using a time delay embedding (see Takens' theorem):

where is the time series (with and the sampling time), the embedding dimension, and the time delay. However, pPhase space reconstruction is not essential part of the RQA (although often stated in literature), because it is based on phase space trajectories which could be derived from the system's variables directly (e.g., from the three variables of the Lorenz system) or from multivariate data.

The RQA quantifies the small-scale structures of recurrence plots, which present the number and duration of the recurrences of a dynamical system. The measures introduced for the RQA were developed heuristically between 1992 and 2002. [4] [5] [6] They are actually measures of complexity. The main advantage of the RQA is that it can provide useful information even for short and non-stationary data, where other methods fail.

RQA can be applied to almost every kind of data. It is widely used in physiology, but was also successfully applied on problems from engineering, chemistry, Earth sciences etc. [2] Further extensions and variations of measures for quantifying recurrence properties have been proposed to address specific research questions. RQA measures are also combined with machine learning approaches for classification tasks. [7]


RQA measures

The simplest measure is the recurrence rate, which is the density of recurrence points in a recurrence plot: [1]

The recurrence rate corresponds with the probability that a specific state will recur. It is almost equal with the definition of the correlation sum, where the LOI is excluded from the computation.

The next measure is the percentage of recurrence points which form diagonal lines in the recurrence plot of minimal length : [5]

where is the frequency distribution of the lengths of the diagonal lines (i.e., it counts how many instances have length ). This measure is called determinism and is related with the predictability of the dynamical system, because white noise has a recurrence plot with almost only single dots and very few diagonal lines, whereas a deterministic process has a recurrence plot with very few single dots but many long diagonal lines.

The number of recurrence points which form vertical lines can be quantified in the same way: [6]

where is the frequency distribution of the lengths of the vertical lines, which have at least a length of . This measure is called laminarity and is related with the amount of laminar phases in the system (intermittency).

The lengths of the diagonal and vertical lines can be measured as well. The averaged diagonal line length [5]

is related with the predictability time of the dynamical system and the trapping time, measuring the average length of the vertical lines, [6]

is related with the laminarity time of the dynamical system, i.e. how long the system remains in a specific state. [6]

Because the length of the diagonal lines is related on the time how long segments of the phase space trajectory run parallel, i.e. on the divergence behaviour of the trajectories, it was sometimes stated that the reciprocal of the maximal length of the diagonal lines (without LOI) would be an estimator for the positive maximal Lyapunov exponent of the dynamical system. Therefore, the maximal diagonal line length or the divergence: [1]

are also measures of the RQA. However, the relationship between these measures with the positive maximal Lyapunov exponent is not as easy as stated, but even more complex (to calculate the Lyapunov exponent from an RP, the whole frequency distribution of the diagonal lines has to be considered). The divergence can have the trend of the positive maximal Lyapunov exponent, but not more. Moreover, also RPs of white noise processes can have a really long diagonal line, although very seldom, just by a finite probability. Therefore, the divergence cannot reflect the maximal Lyapunov exponent.

The probability that a diagonal line has exactly length can be estimated from the frequency distribution with . The Shannon entropy of this probability, [5]

reflects the complexity of the deterministic structure in the system. However, this entropy depends sensitively on the bin number and, thus, may differ for different realisations of the same process, as well as for different data preparations.

The last measure of the RQA quantifies the thinning-out of the recurrence plot. The trend is the regression coefficient of a linear relationship between the density of recurrence points in a line parallel to the LOI and its distance to the LOI. More exactly, consider the recurrence rate in a diagonal line parallel to LOI of distance k (diagonal-wise recurrence rate or τ-recurrence rate): [1]

then the trend is defined by [5]

with as the average value and . This latter relation should ensure to avoid the edge effects of too low recurrence point densities in the edges of the recurrence plot. The measure trend provides information about the stationarity of the system.

Similar to the -recurrence rate, the other measures based on the diagonal lines (DET, L, ENTR) can be defined diagonal-wise. These definitions are useful to study interrelations or synchronisation between different systems (using recurrence plots or cross recurrence plots). [8]

Time-dependent RQA

Instead of computing the RQA measures of the entire recurrence plot, they can be computed in small windows moving over the recurrence plot along the LOI. This provides time-dependent RQA measures which allow detecting, e.g., chaos-chaos transitions. [9] [1] Note: the choice of the size of the window can strongly influence the measure trend.

Example

Bifurcation diagram for the Logistic map. LogisticMap BifurcationDiagram.png
Bifurcation diagram for the Logistic map.
RQA measures of the logistic map for various setting of the control parameter a. The measures RR and DET exhibit maxima at chaos-order/ order-chaos transitions. The measure DIV has a similar trend as the maximal Lyapunov exponent (but it is not the same!). The measure LAM has maxima at chaos-chaos transitions (laminar phases, intermittency). Logistic map rqa.svg
RQA measures of the logistic map for various setting of the control parameter a. The measures RR and DET exhibit maxima at chaos-order/ order-chaos transitions. The measure DIV has a similar trend as the maximal Lyapunov exponent (but it is not the same!). The measure LAM has maxima at chaos-chaos transitions (laminar phases, intermittency).

See also


Related Research Articles

<span class="mw-page-title-main">Dynamical system</span> Mathematical model of the time dependence of a point in space

In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space, such as in a parametric curve. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water in a pipe, the random motion of particles in the air, and the number of fish each springtime in a lake. The most general definition unifies several concepts in mathematics such as ordinary differential equations and ergodic theory by allowing different choices of the space and how time is measured. Time can be measured by integers, by real or complex numbers or can be a more general algebraic object, losing the memory of its physical origin, and the space may be a manifold or simply a set, without the need of a smooth space-time structure defined on it.

<span class="mw-page-title-main">Lyapunov exponent</span> The rate of separation of infinitesimally close trajectories

In mathematics, the Lyapunov exponent or Lyapunov characteristic exponent of a dynamical system is a quantity that characterizes the rate of separation of infinitesimally close trajectories. Quantitatively, two trajectories in phase space with initial separation vector diverge at a rate given by

Ergodic theory is a branch of mathematics that studies statistical properties of deterministic dynamical systems; it is the study of ergodicity. In this context, "statistical properties" refers to properties which are expressed through the behavior of time averages of various functions along trajectories of dynamical systems. The notion of deterministic dynamical systems assumes that the equations determining the dynamics do not contain any random perturbations, noise, etc. Thus, the statistics with which we are concerned are properties of the dynamics.

<span class="mw-page-title-main">Inverted pendulum</span> Pendulum with center of mass above pivot

An inverted pendulum is a pendulum that has its center of mass above its pivot point. It is unstable and falls over without additional help. It can be suspended stably in this inverted position by using a control system to monitor the angle of the pole and move the pivot point horizontally back under the center of mass when it starts to fall over, keeping it balanced. The inverted pendulum is a classic problem in dynamics and control theory and is used as a benchmark for testing control strategies. It is often implemented with the pivot point mounted on a cart that can move horizontally under control of an electronic servo system as shown in the photo; this is called a cart and pole apparatus. Most applications limit the pendulum to 1 degree of freedom by affixing the pole to an axis of rotation. Whereas a normal pendulum is stable when hanging downward, an inverted pendulum is inherently unstable, and must be actively balanced in order to remain upright; this can be done either by applying a torque at the pivot point, by moving the pivot point horizontally as part of a feedback system, changing the rate of rotation of a mass mounted on the pendulum on an axis parallel to the pivot axis and thereby generating a net torque on the pendulum, or by oscillating the pivot point vertically. A simple demonstration of moving the pivot point in a feedback system is achieved by balancing an upturned broomstick on the end of one's finger.

<span class="mw-page-title-main">Quantum chaos</span> Branch of physics seeking to explain chaotic dynamical systems in terms of quantum theory

Quantum chaos is a branch of physics focused on how chaotic classical dynamical systems can be described in terms of quantum theory. The primary question that quantum chaos seeks to answer is: "What is the relationship between quantum mechanics and classical chaos?" The correspondence principle states that classical mechanics is the classical limit of quantum mechanics, specifically in the limit as the ratio of the Planck constant to the action of the system tends to zero. If this is true, then there must be quantum mechanisms underlying classical chaos. If quantum mechanics does not demonstrate an exponential sensitivity to initial conditions, how can exponential sensitivity to initial conditions arise in classical chaos, which must be the correspondence principle limit of quantum mechanics?

Various types of stability may be discussed for the solutions of differential equations or difference equations describing dynamical systems. The most important type is that concerning the stability of solutions near to a point of equilibrium. This may be discussed by the theory of Aleksandr Lyapunov. In simple terms, if the solutions that start out near an equilibrium point stay near forever, then is Lyapunov stable. More strongly, if is Lyapunov stable and all solutions that start out near converge to , then is said to be asymptotically stable. The notion of exponential stability guarantees a minimal rate of decay, i.e., an estimate of how quickly the solutions converge. The idea of Lyapunov stability can be extended to infinite-dimensional manifolds, where it is known as structural stability, which concerns the behavior of different but "nearby" solutions to differential equations. Input-to-state stability (ISS) applies Lyapunov notions to systems with inputs.

In descriptive statistics and chaos theory, a recurrence plot (RP) is a plot showing, for each moment in time, the times at which the state of a dynamical system returns to the previous state at , i.e., when the phase space trajectory visits roughly the same area in the phase space as at time . In other words, it is a plot of

In physics, chemistry, and related fields, master equations are used to describe the time evolution of a system that can be modeled as being in a probabilistic combination of states at any given time, and the switching between states is determined by a transition rate matrix. The equations are a set of differential equations – over time – of the probabilities that the system occupies each of the different states.

A Hamiltonian system is a dynamical system governed by Hamilton's equations. In physics, this dynamical system describes the evolution of a physical system such as a planetary system or an electron in an electromagnetic field. These systems can be studied in both Hamiltonian mechanics and dynamical systems theory.

In mathematics, a separatrix is the boundary separating two modes of behaviour in a differential equation.

LaSalle's invariance principle is a criterion for the asymptotic stability of an autonomous dynamical system.

In mechanics, virial stress is a measure of stress on an atomic scale for homogeneous systems. The name is derived from Latin vis 'force': "Virial is then derived from Latin as well, stemming from the word virias meaning forces." The expression of the (local) virial stress can be derived as the functional derivative of the free energy of a molecular system with respect to the deformation tensor.

Recurrence period density entropy (RPDE) is a method, in the fields of dynamical systems, stochastic processes, and time series analysis, for determining the periodicity, or repetitiveness of a signal.

<span class="mw-page-title-main">Chaotic mixing</span>

In chaos theory and fluid dynamics, chaotic mixing is a process by which flow tracers develop into complex fractals under the action of a fluid flow. The flow is characterized by an exponential growth of fluid filaments. Even very simple flows, such as the blinking vortex, or finitely resolved wind fields can generate exceptionally complex patterns from initially simple tracer fields.

<span class="mw-page-title-main">Kicked rotator</span>

The kicked rotator, also spelled as kicked rotor, is a paradigmatic model for both Hamiltonian chaos and quantum chaos. It describes a free rotating stick in an inhomogeneous "gravitation like" field that is periodically switched on in short pulses. The model is described by the Hamiltonian

In applied mathematics and dynamical system theory, Lyapunov vectors, named after Aleksandr Lyapunov, describe characteristic expanding and contracting directions of a dynamical system. They have been used in predictability analysis and as initial perturbations for ensemble forecasting in numerical weather prediction. In modern practice they are often replaced by bred vectors for this purpose.

This article describes Lyapunov optimization for dynamical systems. It gives an example application to optimal control in queueing networks.

In computer science, an optimal binary search tree (Optimal BST), sometimes called a weight-balanced binary tree, is a binary search tree which provides the smallest possible search time (or expected search time) for a given sequence of accesses (or access probabilities). Optimal BSTs are generally divided into two types: static and dynamic.

In the mathematics of dynamical systems, the concept of Lyapunov dimension was suggested by Kaplan and Yorke for estimating the Hausdorff dimension of attractors. Further the concept has been developed and rigorously justified in a number of papers, and nowadays various different approaches to the definition of Lyapunov dimension are used. Remark that the attractors with noninteger Hausdorff dimension are called strange attractors. Since the direct numerical computation of the Hausdorff dimension of attractors is often a problem of high numerical complexity, estimations via the Lyapunov dimension became widely spread. The Lyapunov dimension was named after the Russian mathematician Aleksandr Lyapunov because of the close connection with the Lyapunov exponents.

Fubini's nightmare is a seeming violation of Fubini's theorem, where a nice space, such as the square is foliated by smooth fibers, but there exists a set of positive measure whose intersection with each fiber is singular. There is no real contradiction to Fubini's theorem because despite smoothness of the fibers, the foliation is not absolutely continuous, and neither are the conditional measures on fibers.

References

  1. 1 2 3 4 5 6 N. Marwan; M. C. Romano; M. Thiel; J. Kurths (2007). "Recurrence Plots for the Analysis of Complex Systems". Physics Reports. 438 (5–6): 237. Bibcode:2007PhR...438..237M. doi:10.1016/j.physrep.2006.11.001.
  2. 1 2 N. Marwan (2008). "A historical review of recurrence plots". European Physical Journal ST. 164 (1): 3–12. arXiv: 1709.09971 . Bibcode:2008EPJST.164....3M. doi:10.1140/epjst/e2008-00829-1. S2CID   119494395.
  3. J. P. Eckmann, S. O. Kamphorst, D. Ruelle (1987). "Recurrence Plots of Dynamical Systems". Europhysics Letters. 5 (9): 973–977. Bibcode:1987EL......4..973E. doi:10.1209/0295-5075/4/9/004. S2CID   250847435.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. J. P. Zbilut; C. L. Webber (1992). "Embeddings and delays as derived from quantification of recurrence plots". Physics Letters A. 171 (3–4): 199–203. Bibcode:1992PhLA..171..199Z. doi:10.1016/0375-9601(92)90426-M. S2CID   122890777.
  5. 1 2 3 4 5 C. L. Webber; J. P. Zbilut (1994). "Dynamical assessment of physiological systems and states using recurrence plot strategies". Journal of Applied Physiology. 76 (2): 965–973. doi:10.1152/jappl.1994.76.2.965. PMID   8175612. S2CID   23854540.
  6. 1 2 3 4 N. Marwan; N. Wessel; U. Meyerfeldt; A. Schirdewan; J. Kurths (2002). "Recurrence Plot Based Measures of Complexity and its Application to Heart Rate Variability Data". Physical Review E. 66 (2): 026702. arXiv: physics/0201064 . Bibcode:2002PhRvE..66b6702M. doi:10.1103/PhysRevE.66.026702. PMID   12241313. S2CID   14803032.
  7. N. Marwan; K. H. Kraemer (2023). "Trends in recurrence analysis of dynamical systems". European Physical Journal – Special Topics. 232: 5–27. arXiv: 2409.04110 . Bibcode:2023EPJST.232....5M. doi: 10.1140/epjs/s11734-022-00739-8 . S2CID   255630484.
  8. Marwan, N., Kurths, J. (2002). "Nonlinear analysis of bivariate data with cross recurrence plots". Physics Letters A. 302 (5–6): 299–307. arXiv: physics/0201061 . Bibcode:2002PhLA..302..299M. doi:10.1016/S0375-9601(02)01170-2. S2CID   8020903.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. L. L. Trulla; A. Giuliani; J. P. Zbilut; C. L. Webber, Jr. (1996). "Recurrence quantification analysis of the logistic equation with transients". Physics Letters A. 223 (4): 255–260. doi:10.1016/S0375-9601(96)00741-4.