Relative wind

Last updated

In aeronautics, the relative wind is the direction of movement of the atmosphere relative to an aircraft or an airfoil. It is opposite to the direction of movement of the aircraft or airfoil relative to the atmosphere. Close to any point on the surface of an aircraft or airfoil, the air is moving parallel to the surface; but at a great distance from the aircraft or airfoil, the movement of the air can be represented by a single vector. This vector is the relative wind or the free stream velocity vector. [1]

The angle between the chord line of an airfoil and the relative wind defines the angle of attack. The relative wind is of great importance to pilots because exceeding the critical angle of attack will result in a stall, regardless of airspeed.

In freefall

Relative wind is also used to describe the airflow relative to an object in freefall through an atmosphere, such as that of a person's body during the freefall portion of a skydive or BASE jump. In a normal skydive, the vertical descent of the skydiver creates an upward relative wind. The relative wind strength increases with increased descent rate.

The relative wind is directly opposite the direction of travel.

When a skydiver exits a forward-moving aircraft such as an aeroplane, the relative wind emanates from the direction the aeroplane is facing due to the skydiver's initial forward (horizontal) momentum. As aerodynamic drag gradually overcomes this forward momentum and gravity simultaneously attracts the skydiver downward, the relative wind alters proportionally into an upward (vertical) direction. This creates an arc of travel for the skydiver similar to water flowing from a low pressure hose held horizontally and creates a variation in the angle of the relative wind from horizontal to vertical.

When exiting from a forward-moving aircraft (as distinguished from a hovering aircraft, such as a balloon or a helicopter in hover mode) during a normal belly-to-earth skydive, the skydiver must arch his body in the direction of travel which is initially horizontal. If the skydiver continues to arch, his belly will gradually alter pitch until he is belly-to-earth. This section of the jump is commonly referred to as "the hill".

Relative wind differs from the wind in meteorology in that the object (e.g.., the skydiver) moves past the air, as opposed to the air moving past the object.

Related Research Articles

Lift (force) Force perpendicular to flow of surrounding fluid

A fluid flowing around the surface of an object exerts a force on it. Lift is the component of this force that is perpendicular to the oncoming flow direction. It contrasts with the drag force, which is the component of the force parallel to the flow direction. Lift conventionally acts in an upward direction in order to counter the force of gravity, but it can act in any direction at right angles to the flow.

Precession Periodic change in the direction of a rotation axis

Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In other words, if the axis of rotation of a body is itself rotating about a second axis, that body is said to be precessing about the second axis. A motion in which the second Euler angle changes is called nutation. In physics, there are two types of precession: torque-free and torque-induced.

Freeflying

Freeflying is a skydiving discipline which began in the late 1980s, involving freefalling in various vertical orientations, as opposed to the traditional "belly-to-earth" orientation. The discipline is known to have originated when Olav Zipser began experimenting with non-traditional forms of bodyflight. Zipser founded the FreeFly Clowns as a two-person competitive team with Mike Vail in 1992, and was joined by Omar Alhegelan, Charles Bryan, and Stefania Martinengo in 1994. The FreeFly Clowns are also credited with opening the first school to teach freeflying, The First School of Modern SkyFlying.

Flight Process by which an object moves, through an atmosphere or beyond it

Flight is the process by which an object moves through an atmosphere without contact with the surface. This can be achieved by generating aerodynamic lift associated with propulsive thrust, aerostatically using buoyancy, or by ballistic movement.

Wind shear Difference in wind speed or direction over a short distance

Wind shear, sometimes referred to as wind gradient, is a difference in wind speed or direction over a relatively short distance in the atmosphere. Atmospheric wind shear is normally described as either vertical or horizontal wind shear. Vertical wind shear is a change in wind speed or direction with change in altitude. Horizontal wind shear is a change in wind speed with change in lateral position for a given altitude.

Angle of attack

In fluid dynamics, angle of attack is the angle between a reference line on a body and the vector representing the relative motion between the body and the fluid through which it is moving. Angle of attack is the angle between the body's reference line and the oncoming flow. This article focuses on the most common application, the angle of attack of a wing or airfoil moving through air.

Jet force

Jet force is the exhaust from some machine, esp. aircraft, propelling the object itself in the opposite direction as per Newton's Third Law. An understanding of jet force is intrinsic to the launching of drones, satellites, rockets, airplanes and other airborne machines.

Wingsuit flying Variant of skydiving activity involving a specially designed suit which offers control surfaces

Wingsuit flying is the sport of flying through the air using a wingsuit which adds surface area to the human body to enable a significant increase in lift. The modern wingsuit, first developed in the late 1990s, creates a surface area with fabric between the legs and under the arms. Wingsuits are sometimes referred to as "birdman suits", "squirrel suits", and "bat suits".

Flight mechanics are relevant to fixed wing and rotary wing (helicopters) aircraft. An aeroplane, is defined in ICAO Document 9110 as, "a power-driven heavier than air aircraft, deriving its lift chiefly from aerodynamic reactions on surface which remain fixed under given conditions of flight".

Retreating blade stall is a hazardous flight condition in helicopters and other rotary wing aircraft, where the retreating rotor blade has a lower relative blade speed, combined with an increased angle of attack, causing a stall and loss of lift. Retreating blade stall is the primary limiting factor of a helicopter's never exceed speed, VNE.

Tracking, a basic freefall skill learned by a novice skydiver, is the technique of assuming a body position that allows the skydiver to move horizontally while freefalling.

A tailwind is a wind that blows in the direction of travel of an object, while a headwind blows against the direction of travel. A tailwind increases the object's speed and reduces the time required to reach its destination, while a headwind has the opposite effect.

Stabilizer (aeronautics) Aircraft component

An aircraft stabilizer is an aerodynamic surface, typically including one or more movable control surfaces, that provides longitudinal (pitch) and/or directional (yaw) stability and control. A stabilizer can feature a fixed or adjustable structure on which any movable control surfaces are hinged, or it can itself be a fully movable surface such as a stabilator. Depending on the context, "stabilizer" may sometimes describe only the front part of the overall surface.

Adverse yaw is the natural and undesirable tendency for an aircraft to yaw in the opposite direction of a roll. It is caused by the difference in lift and drag of each wing. The effect can be greatly minimized with ailerons deliberately designed to create drag when deflected upward and/or mechanisms which automatically apply some amount of coordinated rudder. As the major causes of adverse yaw vary with lift, any fixed-ratio mechanism will fail to fully solve the problem across all flight conditions and thus any manually operated aircraft will require some amount of rudder input from the pilot in order to maintain coordinated flight.

Dissymmetry of lift

Dissymmetry of lift in rotorcraft aerodynamics refers to an uneven amount of lift on opposite sides of the rotor disc. It is a phenomenon that affects single-rotor helicopters and autogyros in forward flight.

Cyclogyro aircraft configuration that uses a horizontal-axis cyclorotor as a rotor wing

The cyclogyro, or cyclocopter, is an aircraft configuration that uses a horizontal-axis cyclorotor as a rotor wing to provide lift and sometimes also propulsion and control. In principle, the cyclogyro is capable of vertical take off and landing and hovering performance like a helicopter, while potentially benefiting from some of the advantages of a fixed-wing aircraft.

Parachuting Action sport of exiting an aircraft and returning to Earth using a parachute

Parachuting is a method of transiting from a high point to Earth with the aid of gravity, involving the control of speed during the descent using a parachute or parachutes. It may involve more or less free-falling which is a period when the parachute has not yet been deployed and the body gradually accelerates to terminal velocity.

3D Aerobatics or 3D flying is a form of flying using flying aircraft to perform specific aerial maneuvers. They are usually performed when the aircraft had been intentionally placed in a stalled position.

Course Setting Bomb Sight Vector bombsight

The Course Setting Bomb Sight (CSBS) is the canonical vector bombsight, the first practical system for properly accounting for the effects of wind when dropping bombs. It is also widely referred to as the Wimperis sight after its inventor, Harry Wimperis.

Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

References

  1. Clancy, L.J. (1975), Aerodynamics, Section 5.2, Pitman Publishing Limited, London ISBN   0-273-01120-0