Residual property (physics)

Last updated

In thermodynamics a residual property is defined as the difference between a real fluid property and an ideal gas property, both considered at the same density, temperature, and composition, typically expressed as

Contents

where is some thermodynamic property at given temperature, volume and mole numbers, is value of the property for an ideal gas, and is the residual property. The reference state is typically incorporated into the ideal gas contribution to the value, as

where is the value of at the reference state (commonly pure, ideal gas species at 1 bar), and is the departure of the property for an ideal gas at from this reference state.

Residual properties should not be confused with excess properties, which are defined as the deviation of a thermodynamic property from some reference system, that is typically not an ideal gas system. Whereas excess properties and excess models (also known as activity coefficient models) typically concern themselves with strictly liquid-phase systems, such as smelts, polymer blends or electrolytes, residual properties are intimately linked to equations of state which are commonly used to model systems in which vapour-liquid equilibria are prevalent, or systems where both gases and liquids are of interest. For some applications, activity coefficient models and equations of state are combined in what are known as "- models" (read: Gamma-Phi) referring to the symbols commonly used to denote activity coefficients and fugacities.

Significance

In the development and implementation of Equations of State, the concept of residual properties is valuable, as it allows one to separate the behaviour of a fluid that stems from non-ideality from that stemming from the properties of an ideal gas. For example, the isochoric heat capacity is given by

Where the ideal gas heat capacity, , can be measured experimentally, by measuring the heat capacity at very low pressure. After measurement it is typically represented using a polynomial fit such as the Shomate equation. The residual heat capacity is given by

,

and the accuracy of a given equation of state in predicting or correlating the heat capacity can be assessed by regarding only the residual contribution, as the ideal contribution is independent of the equation of state.

In Equilibrium Calculations

In fluid phase equilibria (i.e. liquid-vapour or liquid-liquid equilibria), the notion of the fugacity coefficient is crucial, as it can be shown that the equilibrium condition for a system consisting of phases , , , ... the condition for chemical equilibrium is

for all species , where denotes the mole fraction of species in phase , and is the fugacity coefficient of species in phase . The fugacity coefficient, being defined by

is directly related to the residual chemical potential, as

,

thus, because , we can see that an accurate description of the residual Helmholtz energy, rather than the total Helmholtz energy, is the key to accurately computing the equilibrium state of a system.

Residual Entropy Scaling

The residual entropy of a fluid has some special significance. In 1976, Yasha Rosenfeld published a landmark paper, showing that the transport coefficients of pure liquids, when expressed as functions of the residual entropy, can be treated as monovariate functions, rather than as functions of two variables (i.e. temperature and pressure, or temperature and density). [1] This discovery lead to the concept of residual entropy scaling, which has spurred a large amount of research, up until the modern day, in which various approaches for modelling transport coefficients as functions of the residual entropy have been explored. [2] Residual entropy scaling is still very much an area of active research.

Dependence on variable set

While any real state variable , in a real state (), is independent of whether one evaluates or , one should be aware that the residual property is in general dependent on the variable set, i.e.

This arises from the fact that the real state is in general not a valid ideal gas state, such that the ideal part of the property will be different depending on variable set. Take for example the chemical potential of a pure fluid: In a state that does not satisfy the ideal gas law, but may be a real state for some real fluid. The ideal gas chemical potential computed as a function of temperature, pressure and mole number is

,

while computing it as a function of concentration (), we have

,

such that

,

where we have used , and denotes the compressibility factor. This leads to the result

.

Practical Calculation

In practice, the most significant residual property is the residual Helmholtz energy. The reason for this is that other residual properties can be computed from the residual Helmholtz energy as various derivatives (see: Maxwell relations). We note that

such that

further, because any fluid reduces to an ideal gas in the limit of infinite volume,

.

Thus, for any Equation of State that is explicit in pressure, such as the van der Waals Equation of State, we may compute

.

However, in modern approaches to developing Equations of State, such as SAFT, it is found that it can be simpler to develop the equation of state by directly developing an equation for , rather than developing an equation that is explicit in pressure.

Correlated terms

Related Research Articles

In a chemical reaction, chemical equilibrium is the state in which both the reactants and products are present in concentrations which have no further tendency to change with time, so that there is no observable change in the properties of the system. This state results when the forward reaction proceeds at the same rate as the reverse reaction. The reaction rates of the forward and backward reactions are generally not zero, but they are equal. Thus, there are no net changes in the concentrations of the reactants and products. Such a state is known as dynamic equilibrium.

<span class="mw-page-title-main">Equation of state</span> An equation describing the state of matter under a given set of physical conditions

In physics and chemistry, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal energy. Most modern equations of state are formulated in the Helmholtz free energy. Equations of state are useful in describing the properties of pure substances and mixtures in liquids, gases, and solid states as well as the state of matter in the interior of stars.

<span class="mw-page-title-main">Osmotic pressure</span> Measure of the tendency of a solution to take in pure solvent by osmosis

Osmotic pressure is the minimum pressure which needs to be applied to a solution to prevent the inward flow of its pure solvent across a semipermeable membrane. It is also defined as the measure of the tendency of a solution to take in its pure solvent by osmosis. Potential osmotic pressure is the maximum osmotic pressure that could develop in a solution if it were separated from its pure solvent by a semipermeable membrane

Raoult's law ( law) is a relation of physical chemistry, with implications in thermodynamics. Proposed by French chemist François-Marie Raoult in 1887, it states that the partial pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component multiplied by its mole fraction in the mixture. In consequence, the relative lowering of vapor pressure of a dilute solution of nonvolatile solute is equal to the mole fraction of solute in the solution.

<span class="mw-page-title-main">Ideal gas law</span> Equation of the state of a hypothetical ideal gas

The ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas. It is a good approximation of the behavior of many gases under many conditions, although it has several limitations. It was first stated by Benoît Paul Émile Clapeyron in 1834 as a combination of the empirical Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law. The ideal gas law is often written in an empirical form:

<span class="mw-page-title-main">Ideal gas</span> Mathematical model which approximates the behavior of real gases

An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is amenable to analysis under statistical mechanics. The requirement of zero interaction can often be relaxed if, for example, the interaction is perfectly elastic or regarded as point-like collisions.

<span class="mw-page-title-main">Eutectic system</span> Mixture with a lower melting point than its constituents

A eutectic system or eutectic mixture is a homogeneous mixture that has a melting point lower than those of the constituents. The lowest possible melting point over all of the mixing ratios of the constituents is called the eutectic temperature. On a phase diagram, the eutectic temperature is seen as the eutectic point.

In chemical thermodynamics, activity is a measure of the "effective concentration" of a species in a mixture, in the sense that the species' chemical potential depends on the activity of a real solution in the same way that it would depend on concentration for an ideal solution. The term "activity" in this sense was coined by the American chemist Gilbert N. Lewis in 1907.

<span class="mw-page-title-main">Van der Waals equation</span> Gas equation of state which accounts for non-ideal gas behavior

The van der Waals equation, named for its originator, the Dutch physicist Johannes Diderik van der Waals, is an equation of state that extends the ideal gas law to include the non-zero size of gas molecules and the interactions between them. As a result the equation is able to model the phase change, liquid vapor. It also produces simple analytic expressions for the properties of real substances that shed light on their behavior. One way to write this equation is:

<span class="mw-page-title-main">Gibbs free energy</span> Type of thermodynamic potential

In thermodynamics, the Gibbs free energy is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure-volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure. It also provides a necessary condition for processes such as chemical reactions that may occur under these conditions. The Gibbs free energy is expressed as

In physical chemistry, Henry's law is a gas law that states that the amount of dissolved gas in a liquid is directly proportional to its partial pressure above the liquid. The proportionality factor is called Henry's law constant. It was formulated by the English chemist William Henry, who studied the topic in the early 19th century. In simple words, we can say that the partial pressure of a gas in vapour phase is directly proportional to the mole fraction of a gas in solution.

The diffusion equation is a parabolic partial differential equation. In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion, resulting from the random movements and collisions of the particles. In mathematics, it is related to Markov processes, such as random walks, and applied in many other fields, such as materials science, information theory, and biophysics. The diffusion equation is a special case of the convection–diffusion equation when bulk velocity is zero. It is equivalent to the heat equation under some circumstances.

In chemistry, an ideal solution or ideal mixture is a solution that exhibits thermodynamic properties analogous to those of a mixture of ideal gases. The enthalpy of mixing is zero as is the volume change on mixing by definition; the closer to zero the enthalpy of mixing is, the more "ideal" the behavior of the solution becomes. The vapor pressures of the solvent and solute obey Raoult's law and Henry's law, respectively, and the activity coefficient is equal to one for each component.

In chemical thermodynamics, the fugacity of a real gas is an effective partial pressure which replaces the mechanical partial pressure in an accurate computation of chemical equilibrium. It is equal to the pressure of an ideal gas which has the same temperature and molar Gibbs free energy as the real gas.

In thermodynamics, an activity coefficient is a factor used to account for deviation of a mixture of chemical substances from ideal behaviour. In an ideal mixture, the microscopic interactions between each pair of chemical species are the same and, as a result, properties of the mixtures can be expressed directly in terms of simple concentrations or partial pressures of the substances present e.g. Raoult's law. Deviations from ideality are accommodated by modifying the concentration by an activity coefficient. Analogously, expressions involving gases can be adjusted for non-ideality by scaling partial pressures by a fugacity coefficient.

The Gibbs adsorption isotherm for multicomponent systems is an equation used to relate the changes in concentration of a component in contact with a surface with changes in the surface tension, which results in a corresponding change in surface energy. For a binary system, the Gibbs adsorption equation in terms of surface excess is:

<span class="mw-page-title-main">Diffusion</span> Transport of dissolved species from the highest to the lowest concentration region

Diffusion is the net movement of anything generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical potential. It is possible to diffuse "uphill" from a region of lower concentration to a region of higher concentration, as in spinodal decomposition. Diffusion is a stochastic process due to the inherent randomness of the diffusing entity and can be used to model many real-life stochastic scenarios. Therefore, diffusion and the corresponding mathematical models are used in several fields beyond physics, such as statistics, probability theory, information theory, neural networks, finance, and marketing.

<span class="mw-page-title-main">Langmuir adsorption model</span> Model describing the adsorption of a mono-layer of gas molecules on an ideal flat surface

The Langmuir adsorption model explains adsorption by assuming an adsorbate behaves as an ideal gas at isothermal conditions. According to the model, adsorption and desorption are reversible processes. This model even explains the effect of pressure i.e. at these conditions the adsorbate's partial pressure is related to its volume V adsorbed onto a solid adsorbent. The adsorbent, as indicated in the figure, is assumed to be an ideal solid surface composed of a series of distinct sites capable of binding the adsorbate. The adsorbate binding is treated as a chemical reaction between the adsorbate gaseous molecule and an empty sorption site S. This reaction yields an adsorbed species with an associated equilibrium constant :

An osmotic coefficient is a quantity which characterises the deviation of a solvent from ideal behaviour, referenced to Raoult's law. It can be also applied to solutes. Its definition depends on the ways of expressing chemical composition of mixtures.

The Duhem–Margules equation, named for Pierre Duhem and Max Margules, is a thermodynamic statement of the relationship between the two components of a single liquid where the vapour mixture is regarded as an ideal gas:

References

  1. Rosenfeld, Yaakov (1977-06-01). "Relation between the transport coefficients and the internal entropy of simple systems". Physical Review A. 15 (6): 2545–2549. doi:10.1103/PhysRevA.15.2545.
  2. Bell, Ian H.; Hellmann, Robert; Harvey, Allan H. (2020-03-12). "Zero-Density Limit of the Residual Entropy Scaling of Transport Properties". Journal of Chemical & Engineering Data. 65 (3): 1038–1050. doi:10.1021/acs.jced.9b00455. ISSN   0021-9568.