Rhombicosidodecahedral prism

Last updated
Rhombicosidodecahedral prism
Rhombicosidodecahedral prism.png
Schlegel diagram
One rhombicosidodecahedron and triangular prisms show
Type Prismatic uniform polychoron
Uniform index61
Schläfli symbol t0,2,3{3,5,2} or rr{3,5}×{}
Coxeter-Dynkin CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Cells64 total:
2 rr{5,3}
12 {}x{5}
20 {}x{3}
30 {4,3}
Faces244 total:40 {3}
180 {4}
24 {5}
Edges300
Vertices120
Vertex figure Rhombicosidodecahedron prism verf.png
Trapezoidal pyramid
Symmetry group [5,3,2], order 240
Properties convex
Net Small rhombicosidodecahedral prism net.png
Net

In geometry, a rhombicosidodecahedral prism or small rhombicosidodecahedral prism is a convex uniform polychoron (four-dimensional polytope).

Contents

It is one of 18 convex uniform polyhedral prisms created by using uniform prisms to connect pairs of Platonic solids or Archimedean solids in parallel hyperplanes.

Alternative names

Related Research Articles

<span class="mw-page-title-main">4-polytope</span> Four-dimensional geometric object with flat sides

In geometry, a 4-polytope is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), and cells (polyhedra). Each face is shared by exactly two cells. The 4-polytopes were discovered by the Swiss mathematician Ludwig Schläfli before 1853.

<span class="mw-page-title-main">Uniform 4-polytope</span> Class of 4-dimensional polytopes

In geometry, a uniform 4-polytope is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.

<span class="mw-page-title-main">Rectified 600-cell</span>

In geometry, the rectified 600-cell or rectified hexacosichoron is a convex uniform 4-polytope composed of 600 regular octahedra and 120 icosahedra cells. Each edge has two octahedra and one icosahedron. Each vertex has five octahedra and two icosahedra. In total it has 3600 triangle faces, 3600 edges, and 720 vertices.

<span class="mw-page-title-main">Tetrahedral prism</span> Uniform 4-polytope

In geometry, a tetrahedral prism is a convex uniform 4-polytope. This 4-polytope has 6 polyhedral cells: 2 tetrahedra connected by 4 triangular prisms. It has 14 faces: 8 triangular and 6 square. It has 16 edges and 8 vertices.

<span class="mw-page-title-main">Dodecahedral prism</span>

In geometry, a dodecahedral prism is a convex uniform 4-polytope. This 4-polytope has 14 polyhedral cells: 2 dodecahedra connected by 12 pentagonal prisms. It has 54 faces: 30 squares and 24 pentagons. It has 80 edges and 40 vertices.

<span class="mw-page-title-main">Runcinated 120-cells</span>

In four-dimensional geometry, a runcinated 120-cell is a convex uniform 4-polytope, being a runcination of the regular 120-cell.

<span class="mw-page-title-main">Cuboctahedral prism</span>

In geometry, a cuboctahedral prism is a convex uniform 4-polytope. This 4-polytope has 16 polyhedral cells: 2 cuboctahedra connected by 8 triangular prisms and 6 cubes.

<span class="mw-page-title-main">Octahedral prism</span>

In geometry, an octahedral prism is a convex uniform 4-polytope. This 4-polytope has 10 polyhedral cells: 2 octahedra connected by 8 triangular prisms.

<span class="mw-page-title-main">Truncated tetrahedral prism</span>

In geometry, a truncated tetrahedral prism is a convex uniform polychoron. This polychoron has 10 polyhedral cells: 2 truncated tetrahedra connected by 4 triangular prisms and 4 hexagonal prisms. It has 24 faces: 8 triangular, 18 square, and 8 hexagons. It has 48 edges and 24 vertices.

<span class="mw-page-title-main">Icosahedral prism</span>

In geometry, an icosahedral prism is a convex uniform 4-polytope. This 4-polytope has 22 polyhedral cells: 2 icosahedra connected by 20 triangular prisms. It has 70 faces: 30 squares and 40 triangles. It has 72 edges and 24 vertices.

In 4-dimensional geometry, a truncated octahedral prism or omnitruncated tetrahedral prism is a convex uniform 4-polytope. This 4-polytope has 16 cells It has 64 faces, and 96 edges and 48 vertices.

<span class="mw-page-title-main">Icosidodecahedral prism</span>

In geometry, an icosidodecahedral prism is a convex uniform polychoron.

<span class="mw-page-title-main">Truncated dodecahedral prism</span> Convex uniform polychoron

In geometry, a truncated dodecahedral prism is a convex uniform polychoron.

In geometry, a rhombicuboctahedral prism is a convex uniform polychoron.

<span class="mw-page-title-main">Truncated cubic prism</span>

In geometry, a truncated cubic prism is a convex uniform polychoron.

<span class="mw-page-title-main">Truncated cuboctahedral prism</span>

In geometry, a truncated cuboctahedral prism or great rhombicuboctahedral prism is a convex uniform polychoron.

<span class="mw-page-title-main">Snub cubic prism</span>

In geometry, a snub cubic prism or snub cuboctahedral prism is a convex uniform polychoron.

<span class="mw-page-title-main">Truncated icosahedral prism</span>

In geometry, a truncated icosahedral prism is a convex uniform polychoron.

<span class="mw-page-title-main">Truncated icosidodecahedral prism</span>

In geometry, a truncated icosidodecahedral prism or great rhombicosidodecahedral prism is a convex uniform 4-polytope.

<span class="mw-page-title-main">Snub dodecahedral prism</span>

In geometry, a snub dodecahedral prism or snub icosidodecahedral prism is a convex uniform polychoron.

References