Right group

Last updated

In mathematics, a right group [1] [2] is an algebraic structure consisting of a set together with a binary operation that combines two elements into a third element while obeying the right group axioms. The right group axioms are similar to the group axioms, but while groups can have only one identity and any element can have only one inverse, right groups allow for multiple one-sided identity elements and multiple one-sided inverse elements.

Contents

It can be proven (theorem 1.27 in [2] ) that a right group is isomorphic to the direct product of a right zero semigroup and a group, while a right abelian group [1] is the direct product of a right zero semigroup and an abelian group. Left group [1] [2] and left abelian group [1] are defined in analogous way, by substituting right for left in the definitions. The rest of this article will be mostly concerned about right groups, but everything applies to left groups by doing the appropriate right/left substitutions.

Definition

A right group, originally called multiple group, [3] [4] is a set with a binary operation ⋅, satisfying the following axioms: [4]

Closure
For all and in , there is an element c in such that .
Associativity
For all in , .
Left identity element
There is at least one left identity in . That is, there exists an element such that for all in . Such an element does not need to be unique.
Right inverse elements
For every in and every identity element , also in , there is at least one element in , such that . Such element is said to be the right inverse of with respect to .

Examples

Direct product of finite sets

The following example is provided by. [4] Take the group , the right zero semigroup and construct a right group as the direct product of and .

is simply the cyclic group of order 3, with as its identity, and and as the inverses of each other.

table
eab
eeab
aabe
bbea

is the right zero semigroup of order 2. Notice the each element repeats along its column, since by definition , for any and in .

table
12
112
212

The direct product of these two structures is defined as follows:

Formula 1: 

The elements of will look like and so on. For brevity, let's rename these as , and so on. The Cayley table of is as follows:

table
e1a1b1e2a2b2
e1e1a1b1e2a2b2
a1a1b1e1a2b2e2
b1b1e1a1b2e2a2
e2e1a1b1e2a2b2
a2a1b1e1a2b2e2
b2b1e1a1b2e2a2

Here are some facts about :

Complex numbers in polar coordinates

Clifford gives a second example [4] involving complex numbers. Given two non-zero complex numbers a and b, the following operation forms a right group:

All complex numbers with modulus equal to 1 are left identities, and all complex numbers will have a right inverse with respect to any left identity.

The inner structure of this right group becomes clear when we use polar coordinates: let and , where A and B are the magnitudes and and are the arguments (angles) of a and b, respectively. (this is not the regular multiplication of complex numbers) then becomes . If we represent the magnitudes and arguments as ordered pairs, we can write this as:

Formula 2: 

This right group is the direct product of a group (positive real numbers under multiplication) and a right zero semigroup induced by the real numbers. Structurally, this is identical to formula 1 above. In fact, this is how all right group operations look like when written as ordered pairs of the direct product of their factors.

Complex numbers in cartesian coordinates

If we take the and complex numbers and define an operation similar to example 2 but use cartesian instead of polar coordinates and addition instead of multiplication, we get another right group, with operation defined as follows:

, or equivalently:  Formula 3: 

A practical example from computer science

Consider the following example from computer science, where a set would be implemented as a programming language type.

Both and are subsets of , the full transformation semigroup on . behaves like a group, where there is a zero duration and every duration has an inverse duration. If we treat these transformations as right semigroup actions, behaves like a right zero semigroup, such that a time zone transformation always cancels any previous time zone transformation on a given date time.

Given any two arbitrary date times and (ignore issues regarding representation boundaries), one can find a pair of a duration and a time zone that will transform into . This composite transformation of time zone conversion and duration adding is isomorphic to the right group .

Taking the java.time package as an example, [5] the sets and would correspond to the class ZonedDateTime, the function plus and the function withZoneSameInstant, respectively. More concretely, for any ZonedDateTime t1 and t2, there is a Duration d and a ZoneId z, such that:

The expression above can be written more concisely using right action notation borrowed from group theory as:

It can also be verified that durations and time zones, when viewed as transformations on date/times, in addition to obeying the axioms of groups and right zero semigroups, respectively, they commute with each other. That is, for any date/time t, any duration d and any timezone z:

This is the same as saying:

Related Research Articles

<span class="mw-page-title-main">Abelian group</span> Commutative group (mathematics)

In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel.

<span class="mw-page-title-main">Group homomorphism</span> Mathematical function between groups that preserves multiplication structure

In mathematics, given two groups, (G, ∗) and (H, ·), a group homomorphism from (G, ∗) to (H, ·) is a function h : GH such that for all u and v in G it holds that

In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type. The word homomorphism comes from the Ancient Greek language: ὁμός meaning "same" and μορφή meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).

<span class="mw-page-title-main">Lorentz transformation</span> Family of linear transformations

In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">Group (mathematics)</span> Set with associative invertible operation

In mathematics, a group is a non-empty set with an operation that satisfies the following constraints: the operation is associative, has an identity element, and every element of the set has an inverse element.

<span class="mw-page-title-main">Monoid</span> Algebraic structure with an associative operation and an identity element

In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0.

<span class="mw-page-title-main">Multiplication</span> Arithmetical operation

Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division. The result of a multiplication operation is called a product.

<span class="mw-page-title-main">Quasigroup</span>

In mathematics, especially in abstract algebra, a quasigroup is an algebraic structure resembling a group in the sense that "division" is always possible. Quasigroups differ from groups mainly in that they need not be associative and need not have an identity element.

<span class="mw-page-title-main">Semigroup</span> Algebraic structure consisting of a set with an associative binary operation

In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it.

In mathematics, the concept of an inverse element generalises the concepts of opposite and reciprocal of numbers.

<span class="mw-page-title-main">Ring (mathematics)</span> Algebraic structure with addition and multiplication

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

In mathematics, an algebraic structure consists of a nonempty set A, a collection of operations on A, and a finite set of identities, known as axioms, that these operations must satisfy.

In abstract algebra, a magma, binar, or, rarely, groupoid is a basic kind of algebraic structure. Specifically, a magma consists of a set equipped with a single binary operation that must be closed by definition. No other properties are imposed.

<span class="mw-page-title-main">Semiring</span> Algebraic ring that need not have additive negative elements

In abstract algebra, a semiring is an algebraic structure. It is a generalization of a ring, dropping the requirement that each element must have an additive inverse. At the same time, it is a generalization of bounded distributive lattices.

In group theory, an inverse semigroupS is a semigroup in which every element x in S has a unique inversey in S in the sense that x = xyx and y = yxy, i.e. a regular semigroup in which every element has a unique inverse. Inverse semigroups appear in a range of contexts; for example, they can be employed in the study of partial symmetries.

<i>F</i>-algebra

In mathematics, specifically in category theory, F-algebras generalize the notion of algebraic structure. Rewriting the algebraic laws in terms of morphisms eliminates all references to quantified elements from the axioms, and these algebraic laws may then be glued together in terms of a single functor F, the signature.

In mathematics, and in particular, algebra, a generalized inverse of an element x is an element y that has some properties of an inverse element but not necessarily all of them. The purpose of constructing a generalized inverse of a matrix is to obtain a matrix that can serve as an inverse in some sense for a wider class of matrices than invertible matrices. Generalized inverses can be defined in any mathematical structure that involves associative multiplication, that is, in a semigroup. This article describes generalized inverses of a matrix .

In mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group: uniqueness, double application "cancelling itself out", and the same interaction law with the binary operation as in the case of the group inverse. It is thus not a surprise that any group is a semigroup with involution. However, there are significant natural examples of semigroups with involution that are not groups.

In mathematics, the oscillator representation is a projective unitary representation of the symplectic group, first investigated by Irving Segal, David Shale, and André Weil. A natural extension of the representation leads to a semigroup of contraction operators, introduced as the oscillator semigroup by Roger Howe in 1988. The semigroup had previously been studied by other mathematicians and physicists, most notably Felix Berezin in the 1960s. The simplest example in one dimension is given by SU(1,1). It acts as Möbius transformations on the extended complex plane, leaving the unit circle invariant. In that case the oscillator representation is a unitary representation of a double cover of SU(1,1) and the oscillator semigroup corresponds to a representation by contraction operators of the semigroup in SL(2,C) corresponding to Möbius transformations that take the unit disk into itself.

In mathematics, an invariant convex cone is a closed convex cone in a Lie algebra of a connected Lie group that is invariant under inner automorphisms. The study of such cones was initiated by Ernest Vinberg and Bertram Kostant.

References

  1. 1 2 3 4 Nagy, Attila (2001). Special classes of semigroups. Dordrecht: Kluwer Academic Publishers. ISBN   0-7923-6890-8. OCLC   46240335.
  2. 1 2 3 Clifford, A. H. (29 June 2014). The algebraic theory of semigroups. Preston, G. B. (Reprinted with corrections ed.). Providence, Rhode Island. ISBN   978-1-4704-1234-0. OCLC   882503487.{{cite book}}: CS1 maint: location missing publisher (link)
  3. Hollings, Christopher D. (2017-09-01). "'Nobody could possibly misunderstand what a group is': a study in early twentieth-century group axiomatics". Archive for History of Exact Sciences. 71 (5): 409–481. doi:10.1007/s00407-017-0193-8. ISSN   1432-0657. PMC   5573778 . PMID   28912607.
  4. 1 2 3 4 Clifford, A. H. (1933). "A System Arising from a Weakened Set of Group Postulates". Annals of Mathematics. 34 (4): 865–871. doi:10.2307/1968703. ISSN   0003-486X. JSTOR   1968703.
  5. "java.time (Java Platform SE 8 )". docs.oracle.com. Retrieved 2021-06-03.