Rimeporide

Last updated
Rimeporide
Rimeporide skeletal.svg
Clinical data
ATC code
  • none
Legal status
Legal status
  • Experimental
Identifiers
  • N-(2-methyl-4,5-bis(methylsulfonyl)benzoyl)guanidine
CAS Number
PubChem CID
ChemSpider
UNII
ChEMBL
Chemical and physical data
Formula C11H15N3O5S2
Molar mass 333.38 g·mol−1
3D model (JSmol)
  • Cc1cc(c(cc1C(=O)NC(=N)N)S(=O)(=O)C)S(=O)(=O)C
  • InChI=1S/C11H15N3O5S2/c1-6-4-8(20(2,16)17)9(21(3,18)19)5-7(6)10(15)14-11(12)13/h4-5H,1-3H3,(H4,12,13,14,15)
  • Key:GROMEQPXDKRRIE-UHFFFAOYSA-N

Rimeporide is an experimental drug for the treatment of Duchenne muscular dystrophy, being developed by the EspeRare foundation. [1] it has been granted orphan drug status by the European Medicines Agency. [2]

Contents

Mechanism of action

The substance blocks an ion pump called sodium–hydrogen antiporter 1. While the exact mechanism is unknown, it is speculated that inhibition of this pump reduces pH, sodium and calcium overload in cells of patients with Duchenne muscular dystrophy. [1]

History

Rimeporide was designed as a treatment for chronic heart failure. It was tested in seven Phase I studies clinical trials in patients with congestive heart failure and some degree of renal insufficiency. Subsequently, the drug was licensed to EspeRare, a Swiss nonprofit organisation [3] that aims at repositioning drugs for rare diseases. As of May 2015, the substance has demonstrated efficacy in several animal models of Duchenne muscular dystrophy. [4]

It has also been recently tested in young boys with Duchenne muscular Dystrophy aged 6 to 11 years. [5]

See also

Other drugs for Duchenne muscular dystrophy

[6]

Related Research Articles

<span class="mw-page-title-main">Muscular dystrophy</span> Genetic disorder

Muscular dystrophies (MD) are a genetically and clinically heterogeneous group of rare neuromuscular diseases that cause progressive weakness and breakdown of skeletal muscles over time. The disorders differ as to which muscles are primarily affected, the degree of weakness, how fast they worsen, and when symptoms begin. Some types are also associated with problems in other organs.

<span class="mw-page-title-main">Dilated cardiomyopathy</span> Medical condition

Dilated cardiomyopathy (DCM) is a condition in which the heart becomes enlarged and cannot pump blood effectively. Symptoms vary from none to feeling tired, leg swelling, and shortness of breath. It may also result in chest pain or fainting. Complications can include heart failure, heart valve disease, or an irregular heartbeat.

<span class="mw-page-title-main">Dystrophin</span> Rod-shaped cytoplasmic protein

Dystrophin is a rod-shaped cytoplasmic protein, and a vital part of a protein complex that connects the cytoskeleton of a muscle fiber to the surrounding extracellular matrix through the cell membrane. This complex is variously known as the costamere or the dystrophin-associated protein complex (DAPC). Many muscle proteins, such as α-dystrobrevin, syncoilin, synemin, sarcoglycan, dystroglycan, and sarcospan, colocalize with dystrophin at the costamere. It has a molecular weight of 427 kDa

<span class="mw-page-title-main">Duchenne muscular dystrophy</span> Type of muscular dystrophy

Duchenne muscular dystrophy (DMD) is a severe type of muscular dystrophy that primarily affects boys. Muscle weakness usually begins around the age of four, and worsens quickly. Muscle loss typically occurs first in the thighs and pelvis followed by the arms. This can result in trouble standing up. Most are unable to walk by the age of 12. Affected muscles may look larger due to increased fat content. Scoliosis is also common. Some may have intellectual disability. Females with a single copy of the defective gene may show mild symptoms.

<span class="mw-page-title-main">Becker muscular dystrophy</span> Genetic muscle disorder

Becker muscular dystrophy is an X-linked recessive inherited disorder characterized by slowly progressing muscle weakness of the legs and pelvis. It is a type of dystrophinopathy. This is caused by mutations in the dystrophin gene, which encodes the protein dystrophin. Becker muscular dystrophy is related to Duchenne muscular dystrophy in that both result from a mutation in the dystrophin gene, but has a milder course.

Antisense therapy is a form of treatment that uses antisense oligonucleotides (ASOs) to target messenger RNA (mRNA). ASOs are capable of altering mRNA expression through a variety of mechanisms, including ribonuclease H mediated decay of the pre-mRNA, direct steric blockage, and exon content modulation through splicing site binding on pre-mRNA. Several ASOs have been approved in the United States, the European Union, and elsewhere.

<span class="mw-page-title-main">Disopyramide</span> Chemical compound

Disopyramide is an antiarrhythmic medication used in the treatment of ventricular tachycardia. It is a sodium channel blocker and therefore classified as a Class 1a anti-arrhythmic agent. Disopyramide has a negative inotropic effect on the ventricular myocardium, significantly decreasing the contractility. Disopyramide also has an anticholinergic effect on the heart which accounts for many adverse side effects. Disopyramide is available in both oral and intravenous forms, and has a low degree of toxicity.

The dystrophin-associated protein complex, also known as the dystrophin-associated glycoprotein complex is a multiprotein complex that includes dystrophin and the dystrophin-associated proteins. It is one of the two protein complexes that make up the costamere in striated muscle cells. The other complex is the integrin-vinculin-talin complex.

<span class="mw-page-title-main">Deflazacort</span> Pharmaceutical drug

Deflazacort is a glucocorticoid used as an anti-inflammatory and immunomodulatory agent. It was patented in 1965 and approved for medical use in 1985. The U.S. Food and Drug Administration (FDA) considers it to be a first-in-class medication for Duchenne Muscular Dystrophy.

<span class="mw-page-title-main">Noncompaction cardiomyopathy</span> Congenital disease of heart muscle

Noncompaction cardiomyopathy (NCC) is a rare congenital disease of heart muscle that affects both children and adults. It results from abnormal prenatal development of heart muscle.

<span class="mw-page-title-main">Ataluren</span> Chemical compound

Ataluren, sold under the brand name Translarna, is a medication for the treatment of Duchenne muscular dystrophy. It was designed by PTC Therapeutics.

Biostrophin is a drug which may serve as a vehicle for gene therapy, in the treatment of Duchenne and Becker muscular dystrophy.

<span class="mw-page-title-main">Ifetroban</span> Chemical compound

Ifetroban is a potent and selective thromboxane receptor antagonist. It has been studied in animal models for the treatment of cancer metastasis, myocardial ischemia, hypertension, stroke, thrombosis, cardiomyopathy, and for its effects on platelets. Clinical trials are evaluating the therapeutic safety and efficacy of oral ifetroban capsules for the treatment of cancer metastasis, cardiovascular disease, aspirin exacerbated respiratory disease, systemic sclerosis, and Duchenne muscular dystrophy.

In molecular biology, exon skipping is a form of RNA splicing used to cause cells to “skip” over faulty or misaligned sections (exons) of genetic code, leading to a truncated but still functional protein despite the genetic mutation.

<span class="mw-page-title-main">Eteplirsen</span> Medication

Eteplirsen is a medication to treat, but not cure, some types of Duchenne muscular dystrophy (DMD), caused by a specific mutation. Eteplirsen only targets specific mutations and can be used to treat about 14% of DMD cases. Eteplirsen is a form of antisense therapy.

<span class="mw-page-title-main">Ezutromid</span> Chemical compound

Ezutromid is an orally administered small molecule utrophin modulator involved in a Phase 2 clinical trial produced by Summit Therapeutics for the treatment of Duchenne muscular dystrophy (DMD). DMD is a fatal x-linked recessive disease affecting approximately 1 in 5000 males and is a designated orphan disease by the FDA and European Medicines Agency. Approximately 1/3 of the children obtain DMD as a result of spontaneous mutation in the dystrophin gene and have no family history of the disease. Dystrophin is a vital component of mature muscle function, and therefore DMD patients have multifarious forms of defunct or deficient dystrophin proteins that all manifest symptomatically as muscle necrosis and eventually organ failure. Ezutromid is theorized to maintain utrophin, a protein functionally and structurally similar to dystrophin that precedes and is replaced by dystrophin during development. Utrophin and dystrophin are reciprocally expressed, and are found in different locations in a mature muscle cell. However, in dystrophin-deficient patients, utrophin was found to be upregulated and is theorized to replace dystrophin in order to maintain muscle fibers. Ezutromid is projected to have the potential to treat all patients suffering with DMD as it maintains the production of utrophin to counteract the lack of dystrophin to retard muscle degeneration. Both the FDA and European Medicines Agency has given ezutromid an orphan drug designation. The FDA Office of Orphan Products and Development offers an Orphan Drug Designation program (ODD) that allows drugs aimed to treat diseases that affect less than 200,000 people in the U.S. monetary incentives such as a period of market exclusivity, tax incentives, and expedited approval processes.

<span class="mw-page-title-main">Vamorolone</span> Chemical compound

Vamorolone is a synthetic steroid, which is under development for the treatment of Duchenne muscular dystrophy.

Golodirsen, sold under the brand name Vyondys 53, is a medication used for the treatment of Duchenne muscular dystrophy (DMD). It is an antisense oligonucleotide drug of phosphorodiamidate morpholino oligomer (PMO) chemistry.

Viltolarsen, sold under the brand name Viltepso, is a medication used for the treatment of Duchenne muscular dystrophy (DMD). Viltolarsen is a Morpholino antisense oligonucleotide.

Casimersen, sold under the brand name Amondys 45, is an antisense oligonucleotide medication used for the treatment of Duchenne muscular dystrophy (DMD) in people who have a confirmed mutation of the dystrophin gene that is amenable to exon 45 skipping. It is an antisense oligonucleotide of phosphorodiamidate morpholino oligomer (PMO). Duchenne muscular dystrophy is a rare disease that primarily affects boys. It is caused by low levels of a muscle protein called dystrophin. The lack of dystrophin causes progressive muscle weakness and premature death.

References

  1. 1 2 Spreitzer H (26 May 2015). "Neue Wirkstoffe – Rimeporid". Österreichische Apothekerzeitung (in German). 69 (11): 12.
  2. "EspeRare's Rimeporide receives Orphan Drug Designation in Duchenne Muscular Dystrophy". EspeRare. 4 May 2015.
  3. "Our mission and vision". EspeRare. Retrieved 23 July 2015.
  4. Ghaleh B, Barthélemy I, Wojcik J, Sambin L, Bizé A, Hittinger L, Tran TD, Thomé FP, Blot S, Su JB (August 2020). "Protective effects of rimeporide on left ventricular function in golden retriever muscular dystrophy dogs" (PDF). International Journal of Cardiology. 312: 89–95. doi:10.1016/j.ijcard.2020.03.031. PMID   32199683. S2CID   214617920.
  5. Previtali SC, Gidaro T, Díaz-Manera J, Zambon A, Carnesecchi S, Roux-Lombard P, Spitali P, Signorelli M, Szigyarto CA, Johansson C, Gray J, Labolle D, Porte Thomé F, Pitchforth J, Domingos J, Muntoni F (September 2020). "Rimeporide as a first- in-class NHE-1 inhibitor: Results of a phase Ib trial in young patients with Duchenne Muscular Dystrophy". Pharmacological Research. 159: 104999. doi:10.1016/j.phrs.2020.104999. PMC   7482441 . PMID   32535224.
  6. Ghaleh B, Barthélemy I, Wojcik J, Sambin L, Bizé A, Hittinger L, et al. (August 2020). "Protective effects of rimeporide on left ventricular function in golden retriever muscular dystrophy dogs" (PDF). International Journal of Cardiology. 312: 89–95. doi:10.1016/j.ijcard.2020.03.031. PMID   32199683. S2CID   214617920.