Robert Tijdeman

Last updated
Robert Tijdeman
Born (1943-07-30) 30 July 1943 (age 81)
Alma mater University of Amsterdam
Known for Tijdeman's theorem
Scientific career
FieldsMathematics
Institutions Leiden University
Doctoral advisor Jan Popken
Doctoral students

Robert Tijdeman (born 30 July 1943 in Oostzaan, North Holland) is a Dutch mathematician. Specializing in number theory, he is best known for his Tijdeman's theorem. He is a professor of mathematics at the Leiden University since 1975, and was chairman of the department of mathematics and computer science at Leiden from 1991 to 1993. He was also president of the Dutch Mathematical Society from 1984 to 1986. [1]

Contents

Tijdeman received his PhD in 1969 from the University of Amsterdam, [2] and received an honorary doctorate from Kossuth Lajos University in 1999. In 1987 he was elected to the Royal Netherlands Academy of Arts and Sciences. [1] [3]

Research

In number theory, Tijdeman's theorem [4] states that there are at most a finite number of consecutive powers. Stated another way, the set of solutions in integers x, y, n, m of the exponential diophantine equation

for exponents n and m greater than one, is finite. [5] [6] (This was a significant step towards resolving Catalan’s conjecture, which Preda Mihăilescu accomplished in 2002.)

Tijdeman worked closely with T.N. Shorey on various arithmetic problems. He has also worked on algorithms in the area of discrete tomography

Selected publications

Related Research Articles

<span class="mw-page-title-main">Diophantine equation</span> Polynomial equation whose integer solutions are sought

In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, for which only integer solutions are of interest. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents.

Catalan's conjecture (or Mihăilescu's theorem) is a theorem in number theory that was conjectured by the mathematician Eugène Charles Catalan in 1844 and proven in 2002 by Preda Mihăilescu at Paderborn University. The integers 23 and 32 are two perfect powers (that is, powers of exponent higher than one) of natural numbers whose values (8 and 9, respectively) are consecutive. The theorem states that this is the only case of two consecutive perfect powers. That is to say, that

In mathematics, a Diophantine equation is an equation of the form P(x1, ..., xj, y1, ..., yk) = 0 (usually abbreviated P(x, y) = 0) where P(x, y) is a polynomial with integer coefficients, where x1, ..., xj indicate parameters and y1, ..., yk indicate unknowns.

Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation, can decide whether the equation has a solution with all unknowns taking integer values.

<span class="mw-page-title-main">Geometry of numbers</span>

Geometry of numbers is the part of number theory which uses geometry for the study of algebraic numbers. Typically, a ring of algebraic integers is viewed as a lattice in and the study of these lattices provides fundamental information on algebraic numbers. Hermann Minkowski initiated this line of research at the age of 26 in his work The Geometry of Numbers.

In mathematics, Diophantine geometry is the study of Diophantine equations by means of powerful methods in algebraic geometry. By the 20th century it became clear for some mathematicians that methods of algebraic geometry are ideal tools to study these equations. Diophantine geometry is part of the broader field of arithmetic geometry.

In mathematics, Schinzel's hypothesis H is one of the most famous open problems in the topic of number theory. It is a very broad generalization of widely open conjectures such as the twin prime conjecture. The hypothesis is named after Andrzej Schinzel.

<span class="mw-page-title-main">Klaus Roth</span> British mathematician (1925–2015)

Klaus Friedrich Roth was a German-born British mathematician who won the Fields Medal for proving Roth's theorem on the Diophantine approximation of algebraic numbers. He was also a winner of the De Morgan Medal and the Sylvester Medal, and a Fellow of the Royal Society.

In mathematics, in the field of number theory, the Ramanujan–Nagell equation is an equation between a square number and a number that is seven less than a power of two. It is an example of an exponential Diophantine equation, an equation to be solved in integers where one of the variables appears as an exponent.

This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.

A height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties to the real numbers.

In mathematics, a thin set in the sense of Serre, named after Jean-Pierre Serre, is a certain kind of subset constructed in algebraic geometry over a given field K, by allowed operations that are in a definite sense 'unlikely'. The two fundamental ones are: solving a polynomial equation that may or may not be the case; solving within K a polynomial that does not always factorise. One is also allowed to take finite unions.

A disjunctive sequence is an infinite sequence of characters drawn from a finite alphabet, in which every finite string appears as a substring. For instance, the binary Champernowne sequence

In number theory, Tijdeman's theorem states that there are at most a finite number of consecutive powers. Stated another way, the set of solutions in integers x, y, n, m of the exponential diophantine equation

In mathematics, the subspace theorem says that points of small height in projective space lie in a finite number of hyperplanes. It is a result obtained by Wolfgang M. Schmidt.

In mathematics, the Goormaghtigh conjecture is a conjecture in number theory named for the Belgian mathematician René Goormaghtigh. The conjecture is that the only non-trivial integer solutions of the exponential Diophantine equation

Arithmetic dynamics is a field that amalgamates two areas of mathematics, dynamical systems and number theory. Part of the inspiration comes from complex dynamics, the study of the iteration of self-maps of the complex plane or other complex algebraic varieties. Arithmetic dynamics is the study of the number-theoretic properties of integer, rational, p-adic, or algebraic points under repeated application of a polynomial or rational function. A fundamental goal is to describe arithmetic properties in terms of underlying geometric structures.

In mathematics, in the field of algebraic number theory, an S-unit generalises the idea of unit of the ring of integers of the field. Many of the results which hold for units are also valid for S-units.

In mathematics, a superelliptic curve is an algebraic curve defined by an equation of the form

Tarlok Nath Shorey is an Indian mathematician who specialises in theory of numbers. He is currently a distinguished professor in the department of mathematics at IIT Bombay. Previously, he worked at TIFR.

References

  1. 1 2 Curriculum vitae from Tijdeman's web site, retrieved 2009-08-26.
  2. Robert Tijdeman at the Mathematics Genealogy Project
  3. "Rob Tijdeman" (in Dutch). Royal Netherlands Academy of Arts and Sciences. Retrieved 15 July 2015.
  4. Tijdeman, Robert (1976), "On the equation of Catalan", Acta Arithmetica , 29 (2): 197–209, doi: 10.4064/aa-29-2-197-209 , Zbl   0286.10013
  5. Narkiewicz, Wladyslaw (2011), Rational Number Theory in the 20th Century: From PNT to FLT, Springer Monographs in Mathematics, Springer-Verlag, p. 352, ISBN   978-0-857-29531-6
  6. Schmidt, Wolfgang M. (1996), Diophantine approximations and Diophantine equations, Lecture Notes in Mathematics, vol. 1467 (2nd ed.), Springer-Verlag, p. 207, ISBN   978-3-540-54058-8, Zbl   0754.11020