Rubiadin

Last updated
Rubiadin
Rubiadin.svg
Names
Preferred IUPAC name
1,3-Dihydroxy-2-methylanthracene-9,10-dione
Other names
Rubiadine; 1,3-Dihydroxy-2-methyl-9,10-anthraquinone; 1,3-Dihydroxy-2-methylanthraquinone
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.208.613 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C15H10O4/c1-7-11(16)6-10-12(13(7)17)15(19)9-5-3-2-4-8(9)14(10)18/h2-6,16-17H,1H3
    Key: IRZTUXPRIUZXMP-UHFFFAOYSA-N
  • CC1=C(C=C2C(=C1O)C(=O)C3=CC=CC=C3C2=O)O
Properties
C15H10O4
Molar mass 254.241 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Rubiadin is a bioactive anthraquinone dye that occurs naturally in several plant species, including Morinda citrifolia . [1]

Contents

History

Although rubiadin was first isolated in 1853 by Edward Schunck from the Rubia tinctorum, it was not until 1893 that Schunck and Leon Marchlewski succeeded in isolating rubiadin glucoside from Dutch madder root. The first synthesis of the compound was achieved in 1927. [2]

Occurrence

Rubiadin occurs in plants of the genus dyer's madder and others. [3] [4] [5] It is one of the pigments of dyer's madders, where it is present as a glucoside. Its monomethyl ether has been isolated from Morinda longiflora and Morinda citrifolia. [6]

Extraction and presentation

Several methods for synthesizing rubiadin have been described. One approach is the synthesis of rubiadin from phthalic anhydride and 2,6-dihydroxytoluene in two reaction steps. However, the yields of both steps were low (33 % and 54 %, respectively), and the reproducibility of this method was very poor. Another synthesis route proceeds via 2-methylpurpurin (1,3,4-trihydroxy-2-methylanthraquinone), but this method requires five steps and each reaction step affords a low yield. A further described synthesis of rubiadin derivatives involves Diels-Alder reactions with halogenated naphthoquinones and dienes. In addition, rubiadin can be obtained by the condensation of 3-bromo-2,6-dimethoxytoluene with a phthalide. [7] [8]

Properties

Rubiadin is a yellow to orange solid, [9] [10] and is soluble in organic solvents. [3]

Use

Rubiadin is a constituent of natural colorants. [11]

References

  1. Bussmann, RW; Hennig, L; Giannis, A; Ortwein, J; Kutchan, TM; Feng, X (2013). "Anthraquinone Content in Noni (Morinda citrifolia L.)". Evidence-Based Complementary and Alternative Medicine. 2013 208378. doi: 10.1155/2013/208378 . PMC   3770026 . PMID   24062780.
  2. Elfed Thomas Jones, Alexander Robertson (1930), "CCXXIII.—Syntheses of glucosides. Part V. Two new syntheses of rubiadin and syntheses of 1-O-methylrubiadin and of rubiadin glucoside", Journal of the Chemical Society (Resumed), pp. 1699–1709, doi:10.1039/JR9300001699
  3. 1 2 Cayman Chemical: Rubiadin (C.I. 75350, CAS Number: 117-02-2) | Cayman Chemical, abgerufen am 21. November 2025.
  4. Herbert Baxter, J.B. Harborne, Gerald P. Moss (1998), [ , p. 557, at Google Books Phytochemical Dictionary A Handbook of Bioactive Compounds from Plants, Second Edition], CRC Press, p. 557, ISBN   978-0-203-48375-6 {{citation}}: Check |url= value (help)CS1 maint: multiple names: authors list (link)
  5. Rainer W. Bussmann, Lothar Hennig, Athanassios Giannis, Jutta Ortwein, Toni M. Kutchan, Xi Feng (2013), "Anthraquinone Content in Noni (Morinda citrifolia L.)", Evidence-Based Complementary and Alternative Medicine, vol. 2013, no. 1, p. 208378, doi: 10.1155/2013/208378 , PMC   3770026 , PMID   24062780 {{citation}}: CS1 maint: multiple names: authors list (link)
  6. Florence D. Stouder, Roger Adams (1927), "Polyhydroxy-methylanthraquinones. ix. Contribution to the Structure of Rubiadin", Journal of the American Chemical Society, vol. 49, no. 8, pp. 2043–2045, Bibcode:1927JAChS..49.2043S, doi:10.1021/ja01407a030
  7. Toshiyuki Takano, Tomomi Kondo, Fumiaki Nakatsubo (2006), "Facile synthesis of rubiadin by microwave heating", Journal of Wood Science, vol. 52, no. 1, pp. 90–92, Bibcode:2006JWSci..52...90T, doi:10.1007/s10086-005-0727-6 {{citation}}: CS1 maint: multiple names: authors list (link)
  8. Mohd Nasarudin Watroly, Mahendran Sekar, Shivkanya Fuloria, Siew Hua Gan, Srikanth Jeyabalan, Yuan Seng Wu, Vetriselvan Subramaniyan, Kathiresan V. Sathasivam, Subban Ravi, Nur Najihah Izzati Mat Rani, Pei Teng Lum, Jaishree Vaijanathappa, Dhanalekshmi Unnikrishnan Meenakshi, Shankar Mani, Neeraj Kumar Fuloria (2021), "Chemistry, Biosynthesis, Physicochemical and Biological Properties of Rubiadin: A Promising Natural Anthraquinone for New Drug Discovery and Development", Drug Design, Development and Therapy, vol. 15, pp. 4527–4549, doi: 10.2147/DDDT.S338548 , PMC   8576757 {{citation}}: CS1 maint: multiple names: authors list (link)
  9. Sigma-Aldrich Co. , product no. {{{id}}} .
  10. W. Karrer (2013), [ , p. 502, at Google Books Konstitution und Vorkommen der organischen Pflanzenstoffe (exclusive Alkaloide)], Springer-Verlag, p. 502, ISBN   978-3-0348-5142-8 {{citation}}: Check |url= value (help)
  11. K. Lacasse, Werner Baumann (2012), [ , p. 940, at Google Books Textile Chemicals Environmental Data and Facts], Springer Science & Business Media, p. 940, ISBN   978-3-642-18898-5 {{citation}}: Check |url= value (help)