S7 (classification)

Last updated
Amanda Fraser is an S7 classified swimmer Amanda Fraser 200IM 02 CC BY-SA.jpg
Amanda Fraser is an S7 classified swimmer

S7, SB6, SM7 are disability swimming classifications used for categorizing swimmers based on their level of disability. Swimmers in this class have use of their arms and trunk. They have limited leg function or are missing a leg or parts of both legs. This class includes a number of different disabilities including people with amputations and cerebral palsy. The classification is governed by the International Paralympic Committee, and competes at the Paralympic Games.

Contents

Classification definition

This classification is for swimming. [1] In the classification title, S represents Freestyle, Backstroke and Butterfly strokes. SB means breaststroke. SM means individual medley. [1] Swimming classifications are on a gradient, with one being the most severely physically impaired to ten having the least amount of physical disability. [2] Jane Buckley, writing for the Sporting Wheelies, describes the swimmers in this classification as having: "full use of their arms and trunk with some leg function; Coordination or weakness problems on the same side of the body; Limb loss of 2 limbs." [1]

Disability types

This class includes people with several disability types include cerebral palsy and amputations. [3] [4] [5]

Amputee

ISOD amputee A2, A3, A5, A6 and A7 swimmers may be found in this class. [5] Prior to the 1990s, the A3, A5, A6 and A7 classes were often grouped with other amputee classes in swimming competitions, including the Paralympic Games. [6]

Upper limb amputees

Because the legs of A5, A6 and A7 are their greatest strength, they modify their entry into the water to take advantage of this. [7] Compared to able bodied swimmers, swimmers in this class have a shorter stroke length and increased stroke rate. [7] The nature of a person's amputations in the A5, A6 and A7 class can affect their physiology and sports performance. Because they are missing a limb, amputees are more prone to overuse injuries in their remaining limbs. Common problems for intact upper limbs for people in this class include rotator cuffs tearing, shoulder impingement, epicondylitis and peripheral nerve entrapment. [8]

A study was done comparing the performance of swimming competitors at the 1984 Summer Paralympics. It found there was no significant difference in performance in times between women in A4, A5 and A6 the 100 meter 100 meter freestyle, men in A4 and A5 in the 100 meter freestyle, men in A5 and A6 in the 100 meter freestyle, women in A5 and A6 in the 50 meter butterfly, women in A4, A5 and A6 in the 4 x 50 meter individual medley, men in A5 and A6 in the 4 x 50 meter individual medley, and men and women in A4, A5 and A6 in the 100 meter backstroke. [6]

Lower limb amputees

A3 swimmers in this class have a similar stroke length and stroke rate to able bodied swimmers. [7] A study was done comparing the performance of swimming competitors at the 1984 Summer Paralympics. It found there was no significant difference in performance in times between men and women in A2 and A3 in the 50 meter breaststroke, men and women in A2 and A3 in the 50 meter freestyle, men and women in A2, A3 and A4 in the 25 meter butterfly, and men in A2 and A3 in the 50 meter backstroke. [6]

The nature of an A3 swimmer's amputations in this class can affect their physiology and sports performance. [8] [9] [10] Because of the potential for balance issues related to having an amputation, during weight training, amputees are encouraged to use a spotter when lifting more than 15 pounds (6.8 kg). [9] Lower limb amputations affect a person's energy cost for being mobile. To keep their oxygen consumption rate similar to people without lower limb amputations, they need to walk slower. [8] A3 swimmers use around 41% more oxygen to walk or run the same distance as someone without a lower limb amputation. [8] A2 swimmers use around 87% more oxygen to walk or run the same distance as someone without a lower limb amputation. [8]

Cerebral palsy

The spasticity athetosis level and location of a CP7 sportsperson. CP7 disability profile.png
The spasticity athetosis level and location of a CP7 sportsperson.
The spasticity athetosis level and location of a CP6 sportsperson. CP6 disability profile.png
The spasticity athetosis level and location of a CP6 sportsperson.

This class includes people with several disability types include cerebral palsy. CP6 and CP7 class swimmers are sometimes found in this class. [3] [11]

CP6 sportspeople are able to walk without the need for an assistive device. [12] They lack coordination in all their limbs, with the greater lack of coordination involving their upper body. [12] [13] [14] [15] Their bodies are often in motion, and they cannot maintain a still state. [13] [15] While CP2, CP3 and CP6 have similar issues with Athetoid or Ataxic, CP6 competitors have "flight" while they are ambulant in that it is possible for both feet to not be touching the ground while walking. CP2 and CP3 are unable to do this. [16]

CP7 sportspeople are able to walk, but appear to do so while having a limp as one side of their body is more affected than the other. [12] [14] [17] [18] They may have involuntary muscle spasms on one side of their body. [14] [18] They have fine motor control on the dominant side of the body, which can present as asymmetry when they are in motion. [15] [18] People in this class tend to have energy expenditure similar to people without cerebral palsy. [19]

Because of the neuromuscular nature of their disability, CP7 swimmers have slower start times than other people in their classes. [3] They are also more likely to interlock their hands when underwater in some strokes to prevent hand drift, which increases drag while swimming. [3] CP6 and CP7 swimmers experience "swimmer's shoulder", a swimming related injury, at rates similar to their able-bodied counterparts. [3] When fatigued, asymmetry in their stroke becomes a problem for swimmers in this class. [3] The integrated classification system used for swimming, where swimmers with CP compete against those with other disabilities, is subject to criticisms: such as that the nature of CP is that greater exertion leads to decreased dexterity and fine motor movements. This puts competitors with CP at a disadvantage when competing against people with amputations who do not lose coordination as a result of exertion. [20]

CP6 swimmers tend to have a passive normalized drag in the range of 0.5 to 0.8. This puts them into the passive drag band of PDB6, PDB7, PDB8, PDB9, and PDB10. [21] CP7 swimmers tend to have a passive normalized drag in the range of 0.6 to 0.8. This puts them into the passive drag band of PDB6, PDB8, and PDB9. [22]

Spinal cord injuries

People with spinal cord injuries compete in this class, including F6 sportspeople. [23] [24] [25]

F6

Functional profile of a wheelchair sportsperson in the F6 class. F6 SP6 disability sports profile.png
Functional profile of a wheelchair sportsperson in the F6 class.

This is a wheelchair sport classification that corresponds to the neurological level L2 - L5. [26] [27] Historically, this class has been known as Lower 4, Upper 5. [26] [27] People with lesions at L4 have issues with their lower back muscles, hip flexors and their quadriceps. [24] People with lesions at L4 to S2 who are complete paraplegics may have motor function issues in their glutes and hamstrings. Their quadriceps are likely to be unaffected. Sensation below the knees and in the groin area may be absent. [28]

People in this class have good sitting balance. [29] People with lesions at L4 have trunk stability, can lift a leg and can flex their hips. They can walk independently with the use of longer leg braces. They may use a wheelchair for the sake of convenience. Recommended sports include many standing related sports. [24] People in this class have a total respiratory capacity of 88% compared to people without a disability. [30]

S7 swimmers with spinal cord injuries tend to be complete paraplegics with lesions below L2 to L3. When swimming, they are able to do an effective catch phase because of good hand control. They can use their arms to get power and maintain control. Their hips are higher in the water than lower numbered classes for people with spinal cord injuries. While they have no kick movement in their legs, they are able to keep their legs in a streamlined position. They use their hands for turns. They either do a sitting dive start or start in the water. [31]

A study was done comparing the performance of athletics competitors at the 1984 Summer Paralympics. It found there was little significant difference in performance times between women in 4 (SP5, SP6), 5 (SP6, SP7) and 6 (SP7) in the 100m breaststroke. It found there was little significant difference in performance times between women in 4 (SP5, SP6), 5 (SP6, SP7) and 6 (SP7) in the 100m backstroke. It found there was little significant difference in performance times between women in 4 (SP5, SP6), 5 (SP6, SP7) and 6 (SP7) in the 100m freestyle. It found there was little significant difference in performance times between women in 4 (SP5, SP6), 5 (SP6, SP7) and 6 (SP7) in the 4 x 50m individual medley. It found there was little significant difference in performance times between men in 4 (SP5, SP6), 5 (SP6, SP7) and 6 (SP7) in the 100m backstroke. It found there was little significant difference in performance times between men in 4 (SP5, SP6), 5 (SP6, SP7) and 6 (SP7) in the 100m breaststroke. It found there was little significant difference in performance times between women in 2 (SP4), 3 (SP4, SP5) and 4 (SP5, SP6) in the 25m butterfly. It found there was little significant difference in performance times between men in 2 (SP4), 3 (SP4, SP5) and 4 (SP5, SP6) in the 25m butterfly. It found there was little significant difference in performance times between women in 5 (SP6, SP7) and 6 (SP7) in the 50m butterfly. It found there was little significant difference in performance times between men in 5 (SP6, SP7) and 6 (SP7) in the 4 x 50m individual medley. It found there was little significant difference in performance times between men in 5 (SP6, SP7) and 6 (SP7) in the 100m freestyle. [6]

History

David Roberts is an S7 classified swimmer David Roberts (swimmer) 2008.jpg
David Roberts is an S7 classified swimmer

The classification was created by the International Paralympic Committee and has roots in a 2003 attempt to address "the overall objective to support and co-ordinate the ongoing development of accurate, reliable, consistent and credible sport focused classification systems and their implementation." [32] In 1997, Against the odds : New Zealand Paralympians said this classification was graded along a gradient, with S1 being the most disabled and S10 being the least disabled. [33]

At the Paralympic Games

For the 2016 Summer Paralympics in Rio, the International Paralympic Committee had a zero classification at the Games policy. This policy was put into place in 2014, with the goal of avoiding last minute changes in classes that would negatively impact athlete training preparations. All competitors needed to be internationally classified with their classification status confirmed prior to the Games, with exceptions to this policy being dealt with on a case-by-case basis. [34]

Competitions

For this classification, organisers of the Paralympic Games have the option of including the following events on the Paralympic programme: 50m and 100m Freestyle, 400m Freestyle, 100m Backstroke, 50m Butterfly, 100m Breaststroke and 200m Individual Medley events. [35]

Records

50m

As of February 2013, Great Britain's David Roberts holds the S7 men's world record for the 50 m freestyle long course event, with a time of 00:27.67. The S7 women's world record is held by the American Mallory Weggemann with a time of 00:31.64. [36]

200m

In the 200 m individual medley event held in the Tokyo 2020 Paralympic Games, the S7 men's world record is held by Israel's Mark Malyar with a time of 2:29.01 (breaking the last record by almost 2 seconds).

400m

In the 400 m freestyle long course event, the S7 men's world record is held by Great Britain's Josef Craig with a time of 4:42.81. The S7 women's world record is held by the Australian Jacqueline Freney in a time of 4:59.02. [37]

Getting classified

Classification generally has four phases. The first stage of classification is a health examination. For amputees in this class, this is often done on site at a sports training facility or competition. The second stage is observation in practice, the third stage is observation in competition and the last stage is assigning the sportsperson to a relevant class. [38] Sometimes the health examination may not be done on site for amputees in this class because the nature of the amputation could cause alterations to the body that are not physically visible. [39]

Swimming classification generally has three components. The first is a bench press. The second is water test. The third is in competition observation. [40] As part of the water test, swimmers are often required to demonstrate their swimming technique for all four strokes. They usually swim a distance of 25 meters for each stroke. They are also generally required to demonstrate how they enter the water and how they turn in the pool. [41]

In Australia, to be classified in this category, athletes contact the Australian Paralympic Committee or their state swimming governing body. [42] In the United States, classification is handled by the United States Paralympic Committee on a national level. The classification test has three components: "a bench test, a water test, observation during competition." [43] American swimmers are assessed by four people: a medical classifier, two general classifiers and a technical classifier. [43]

Competitors

Swimmers who have competed in this classification include Veronica Almeida, [44] Chantal Boonacker [44] and Kirsten Bruhn [44] who all won medals in their class at the 2008 Paralympics. [44] American swimmers who have been classified by the United States Paralympic Committee as being in this class include Alexis Allen, Carly Allen, Segun Arigbede and Benjamin Park.

Related Research Articles

<span class="mw-page-title-main">S8 (classification)</span>

S8, SB7, SM8 are disability swimming classifications used for categorizing swimmers based on their level of disability. This class includes a number of different disabilities including people with amputations and cerebral palsy. The classification is governed by the International Paralympic Committee, and competes at the Paralympic Games.

S10, SB9, SM10 are disability swimming classifications used for categorizing swimmers based on their level of disability. Swimmers in this class tend to have minimal weakness affecting their legs, missing feet, a missing leg below the knee or problems with their hips. This class includes a number of different disabilities including people with amputations and cerebral palsy. The classification is governed by the International Paralympic Committee, and competes at the Paralympic Games.

S8, SB8, SM8 are disability swimming classifications used for categorizing swimmers based on their level of disability. Swimmers in this class generally have severe weakness in one leg. This class includes a number of different disabilities including people with amputations and cerebral palsy. The classification is governed by the International Paralympic Committee, and competes at the Paralympic Games.

S6, SB5, SM6 are disability swimming classifications used for categorising swimmers based on their level of disability. This class includes people with a number of different types of disability including short stature, major limb impairment or loss in two limbs. This includes people with cerebral palsy, people with dwarfism and amputees. The class competes at the Paralympic Games.

S5, SB4, SM5 are disability swimming classifications used for categorizing swimmers based on their level of disability. The class includes people with a moderate level of disability, and includes people with full use of their arms and hands, but limited to no use of their trunk and legs. It also includes people with coordination problems. A variety of disabilities are represented by this class including people with cerebral palsy. The class competes at the Paralympic Games.

S4, SB3, SM4 are disability swimming classifications used for categorising swimmers based on their level of disability. Swimmers in this class have coordination problems affecting all four of their limbs, or have movement in their arms but no trunk or leg function. They also generally have weakness in their hands and arms. A variety of disabilities are represented by this class including people with quadriplegia from spinal cord injury or similar. Events this class can participate in include 50m and 100m Freestyle, 200m Freestyle, 50m Backstroke, 50m Butterfly, 50m Breaststroke, and 150m Individual Medley events. The class competes at the Paralympic Games.

S3, SB2, SM3 are disability swimming classifications used for categorising swimmers based on their level of disability. People in this class have decent arm and hand function, but no use of their trunk and legs. They have severe disabilities in all their limbs. Swimmers in this class have a variety of different disabilities including quadriplegia from spinal cord injury, severe cerebral palsy and multiple amputations.

S2, SB1, SM2 are disability swimming classifications used for categorizing swimmers based on their level of disability. People in this class have limited use of their arms, and no or extremely limited use of their hands, legs and trunk. Swimmers in this class have a variety of different disabilities including cerebral palsy and amputations.

S1, SB1, SM1 are disability swimming classifications used for categorising swimmers based on their level of disability. The classifications cover athletes with "very severe coordination problems in four limbs or have no use of their legs, trunk, hands and minimal use of their shoulders only". Swimmers in this class have a variety of different disabilities including cerebral palsy.

CP8 is a disability sport classification specific to cerebral palsy. In many sports, it is grouped inside other classifications to allow people with cerebral palsy to compete against people with other different disabilities but the same level of functionality.

Amputee sports classification is a disability specific sport classification used for disability sports to facilitate fair competition among people with different types of amputations. This classification was set up by International Sports Organization for the Disabled (ISOD), and is currently managed by IWAS who ISOD merged with in 2005. Several sports have sport specific governing bodies managing classification for amputee sportspeople.

A2 is an amputee sport classification used by the International Sports Organization for the Disabled (ISOD).for people with acquired or congenital amputations. A2 sportspeople have one leg amputated above the knee. Their amputations impact their sport performance, including having balance issues, increased energy costs, higher rates of oxygen consumption, and issues with their gait.

A3 is an amputee sport classification used by the International Sports Organization for the Disabled (ISOD) for people with acquired or congenital amputations. A3 classified sportspeople have both legs amputated below knee. Their amputations impact their sport performance, including having balance issues, increased energy costs, higher rates of oxygen consumption, and issues with their gait. Sports people in this class are eligible to participate in include athletics, swimming, sitting volleyball, archery, weightlifting, badminton, lawn bowls, sitzball and wheelchair basketball.

A4 is an amputee sport classification used by the International Sports Organization for the Disabled (ISOD).for people with acquired or congenital amputations. People in this class have one leg amputated below the knee. Their amputations impact their sport performance, including having balance issues, increased energy costs, higher rates of oxygen consumption, and issues with their gait. Sports people in this class are eligible to participate in include athletics, swimming, sitting volleyball, archery, weightlifting, wheelchair basketball, amputee basketball, amputee football, lawn bowls, and sitzball.

A5 is an amputee sport classification used by the International Sports Organization for the Disabled (ISOD).for people with acquired or congenital amputations. A5 sportspeople are people who have both arms amputated above or through the elbow joint. Their amputations impact their sport performance, including being more prone to overuse injuries. Sports people in this class are eligible to participate in include athletics, swimming, cycling, lawn bowls, and sitzball.

A6 is an amputee sport classification used by the International Sports Organization for the Disabled (ISOD) for people with acquired or congenital amputations. People in this class have one arm amputated above or through the elbow joint. Their amputations impact their sport performance, including being more prone to overuse injuries. Sports people in this class are eligible to participate in include athletics, swimming, cycling, amputee basketball, amputee football, lawn bowls, and sitzball.

A7 is an amputee sport classification used by the International Sports Organization for the Disabled (ISOD) for people with acquired or congenital amputations. A7 sportspeople have both arms amputated below the elbow, but through or above the wrist joint. Their amputations impact their sport performance, including being more prone to overuse injuries. Sports people in this class are eligible to participate in include athletics, swimming, cycling, lawn bowls, and sitzball.

A8 is an amputee sport classification used by the International Sports Organization for the Disabled (ISOD).for people with acquired or congenital amputations. People in this class have one arm amputated below the elbow, but through or above the wrist joint. Their amputations impact their sport performance, including being more prone to overuse injuries. Sports people in this class are eligible to participate in include athletics, swimming, cycling, amputee basketball, amputee football, lawn bowls, and sitzball.

A9 is an amputee sport classification used by the International Sports Organization for the Disabled (ISOD).for people with acquired or congenital amputations. People in this class have combination of amputations of the upper and lower extremities. Their amputations impact their sport performance, including energy costs, balance and potential for overuse of muscles. Sports people in this class are eligible to participate in include athletics, swimming, sitting volleyball, amputee basketball, lawn bowls, sitzball and wheelchair basketball.

A1 is an amputee sport classification used by the International Sports Organization for the Disabled (ISOD) for people with acquired or congenital amputations. This class is for sportspeople who have both legs amputated above the knee. Their amputations impact their sport performance, including having balance issues, increased energy costs, higher rates of oxygen consumption, and issues with their gait. Sports people in this class are eligible to participate in include athletics, swimming, sitting volleyball, archery, weightlifting, badminton, lawn bowls, sitzball and wheelchair basketball.

References

  1. 1 2 3 Buckley, Jane (2011). "Understanding Classification: A Guide to the Classification Systems used in Paralympic Sports". Archived from the original on 11 April 2011. Retrieved 12 November 2011.
  2. Shackell, James (2012-07-24). "Paralympic dreams: Croydon Hills teen a hotshot in pool". Maroondah Weekly. Archived from the original on 2012-12-04. Retrieved 2012-08-01.
  3. 1 2 3 4 5 6 Scott, Riewald; Scott, Rodeo (2015-06-01). Science of Swimming Faster. Human Kinetics. ISBN   9780736095716.
  4. Tim-Taek, Oh; Osborough, Conor; Burkett, Brendan; Payton, Carl (2015). "Consideration of Passive Drag in IPC Swimming Classification System" (PDF). VISTA Conference. International Paralympic Committee. Retrieved July 24, 2016.
  5. 1 2 Tim-Taek, Oh; Osborough, Conor; Burkett, Brendan; Payton, Carl (2015). "Consideration of Passive Drag in IPC Swimming Classification System" (PDF). VISTA Conference. International Paralympic Committee. Retrieved July 24, 2016.
  6. 1 2 3 4 van Eijsden-Besseling, M. D. F. (1985). "The (Non)sense of the Present-Day Classification System of Sports for the Disabled, Regarding Paralysed and Amputee Athletes". Paraplegia. International Medical Society of Paraplegia. 23. Retrieved July 25, 2016.
  7. 1 2 3 Vanlandewijck, Yves C.; Thompson, Walter R. (2011-07-13). Handbook of Sports Medicine and Science, The Paralympic Athlete. John Wiley & Sons. ISBN   9781444348286.
  8. 1 2 3 4 5 Miller, Mark D.; Thompson, Stephen R. (2014-04-04). DeLee & Drez's Orthopaedic Sports Medicine. Elsevier Health Sciences. ISBN   9781455742219.
  9. 1 2 "Classification 101". Blaze Sports. Blaze Sports. June 2012. Retrieved July 24, 2016.
  10. DeLisa, Joel A.; Gans, Bruce M.; Walsh, Nicholas E. (2005-01-01). Physical Medicine and Rehabilitation: Principles and Practice. Lippincott Williams & Wilkins. ISBN   9780781741309.
  11. Tim-Taek, Oh; Osborough, Conor; Burkett, Brendan; Payton, Carl (2015). "Consideration of Passive Drag in IPC Swimming Classification System" (PDF). VISTA Conference. International Paralympic Committee. Retrieved July 24, 2016.
  12. 1 2 3 "CLASSIFICATION SYSTEM FOR STUDENTS WITH A DISABILITY". Queensland Sport. Queensland Sport. Archived from the original on April 4, 2015. Retrieved July 23, 2016.
  13. 1 2 "Clasificaciones de Ciclismo" (PDF). Comisión Nacional de Cultura Física y Deporte (in Mexican Spanish). Mexico: Comisión Nacional de Cultura Física y Deporte. Retrieved July 23, 2016.
  14. 1 2 3 "Kategorie postižení handicapovaných sportovců". Tyden (in Czech). September 12, 2008. Retrieved July 23, 2016.
  15. 1 2 3 Cashman, Richmard; Darcy, Simon (2008-01-01). Benchmark Games. Benchmark Games. ISBN   9781876718053.
  16. "Classification Rulebook" (PDF). International Federation of CP Football. International Federation of CP Football. January 2015. Retrieved July 23, 2016.
  17. "Classification Made Easy" (PDF). Sportability British Columbia. Sportability British Columbia. July 2011. Retrieved July 23, 2016.
  18. 1 2 3 "Clasificaciones de Ciclismo" (PDF). Comisión Nacional de Cultura Física y Deporte (in Mexican Spanish). Mexico: Comisión Nacional de Cultura Física y Deporte. Retrieved July 23, 2016.
  19. Broad, Elizabeth (2014-02-06). Sports Nutrition for Paralympic Athletes. CRC Press. ISBN   9781466507562.
  20. Richter, Kenneth J.; Adams-Mushett, Carol; Ferrara, Michael S.; McCann, B. Cairbre (1992). "llntegrated Swimming Classification : A Faulted System" (PDF). Adapted Physical Activity Quarterly. 9: 5–13. doi:10.1123/apaq.9.1.5.
  21. Tim-Taek, Oh; Osborough, Conor; Burkett, Brendan; Payton, Carl (2015). "Consideration of Passive Drag in IPC Swimming Classification System" (PDF). VISTA Conference. International Paralympic Committee. Retrieved July 24, 2016.
  22. Tim-Taek, Oh; Osborough, Conor; Burkett, Brendan; Payton, Carl (2015). "Consideration of Passive Drag in IPC Swimming Classification System" (PDF). VISTA Conference. International Paralympic Committee. Retrieved July 24, 2016.
  23. International Paralympic Committee (February 2005). "SWIMMING CLASSIFICATION CLASSIFICATION MANUAL" (PDF). International Paralympic Committee Classification Manual.
  24. 1 2 3 Winnick, Joseph P. (2011-01-01). Adapted Physical Education and Sport. Human Kinetics. ISBN   9780736089180.
  25. Tim-Taek, Oh; Osborough, Conor; Burkett, Brendan; Payton, Carl (2015). "Consideration of Passive Drag in IPC Swimming Classification System" (PDF). VISTA Conference. International Paralympic Committee. Retrieved July 24, 2016.
  26. 1 2 National Governing Body for Athletics of Wheelchair Sports, USA. Chapter 2: Competition Rules for Athletics. United States: Wheelchair Sports, USA. 2003.
  27. 1 2 Consejo Superior de Deportes (2011). Deportistas sin Adjectivos (PDF) (in European Spanish). Spain: Consejo Superior de Deportes.
  28. Goosey-Tolfrey, Vicky (2010-01-01). Wheelchair Sport: A Complete Guide for Athletes, Coaches, and Teachers. Human Kinetics. ISBN   9780736086769.
  29. IWAS (20 March 2011). "IWF RULES FOR COMPETITION, BOOK 4 – CLASSIFICATION RULES" (PDF).
  30. Woude, Luc H. V.; Hoekstra, F.; Groot, S. De; Bijker, K. E.; Dekker, R. (2010-01-01). Rehabilitation: Mobility, Exercise, and Sports : 4th International State-of-the-Art Congress. IOS Press. ISBN   9781607500803.
  31. International Paralympic Committee (February 2005). "SWIMMING CLASSIFICATION CLASSIFICATION MANUAL" (PDF). International Paralympic Committee Classification Manual.
  32. "Paralympic Classification Today". International Paralympic Committee. 22 April 2010. p. 3.{{cite web}}: Missing or empty |url= (help)
  33. Gray, Alison (1997). Against the odds : New Zealand Paralympians. Auckland, N.Z.: Hodder Moa Beckett. p. 18. ISBN   1869585666. OCLC   154294284.
  34. "Rio 2016 Classification Guide" (PDF). International Paralympic Committee. International Paralympic Committee. March 2016. Retrieved July 22, 2016.
  35. "Swimming Classification". The Beijing Organizing Committee for the Games of the XXIX Olympiad. 2008. Archived from the original on 14 March 2012. Retrieved 18 November 2011.
  36. "IPC Swimming World Records Long Course - 50FR". International Paralympic Committee. Retrieved 5 February 2013.
  37. "IPC Swimming World Records LC - 400FR" . Retrieved 5 February 2013.
  38. Tweedy, Sean M.; Beckman, Emma M.; Connick, Mark J. (August 2014). "Paralympic Classification: Conceptual Basis, Current Methods, and Research Update". Paralympic Sports Medicine and Science. 6 (85): S11-7. doi:10.1016/j.pmrj.2014.04.013. PMID   25134747. S2CID   207403462 . Retrieved July 25, 2016.
  39. Gilbert, Keith; Schantz, Otto J.; Schantz, Otto (2008-01-01). The Paralympic Games: Empowerment Or Side Show?. Meyer & Meyer Verlag. ISBN   9781841262659.
  40. "CLASSIFICATION GUIDE" (PDF). Swimming Australia. Swimming Australia. Retrieved June 24, 2016.
  41. "Classification Profiles" (PDF). Cerebral Palsy International Sports and Recreation Association. Cerebral Palsy International Sports and Recreation Association. Archived from the original (PDF) on August 18, 2016. Retrieved July 22, 2016.
  42. "Classification Information Sheet" (PDF). Australian Paralympic Committee. 8 March 2011. p. 3. Retrieved 17 November 2011.
  43. 1 2 "U.S. Paralympics National Classification Policies & Procedures SWIMMING". United States Paralympic Committee. 26 June 2011. Retrieved 18 November 2011.
  44. 1 2 3 4 "Results". International Paralympic Committee. Retrieved 18 November 2011.