SCH-202,596

Last updated
SCH-202,596
SCH-202,596.svg
Clinical data
ATC code
  • none
Identifiers
  • methyl (2S)-5,7-dichloro-5'-methoxy-6-methyl-3,3'-dioxo-4-([(1R,4R,5R,6S)-4,5,6-trihydroxy-2-methoxycarbonyl-1-cyclohex-2-enyl]oxy)spiro[1-benzofuran-2,6'-cyclohexa-1,4-diene]-1'-carboxylate
CAS Number
PubChem CID
IUPHAR/BPS
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C25H22Cl2O12
Molar mass 585.34 g·mol−1
3D model (JSmol)
  • O=C(OC)\C4=C\[C@@H](O)[C@@H](O)[C@H](O)[C@@H]4Oc2c(Cl)c(c(Cl)c1O[C@@]3(C(=O)c12)C(/C(=O)OC)=C\C(=O)\C=C3\OC)C
  • InChI=1S/C25H22Cl2O12/c1-8-15(26)20(38-19-10(23(33)36-3)7-12(29)17(30)18(19)31)14-21(16(8)27)39-25(22(14)32)11(24(34)37-4)5-9(28)6-13(25)35-2/h5-7,12,17-19,29-31H,1-4H3/t12-,17-,18+,19-,25+/m1/s1
  • Key:LNGFWDFUPRZMJI-VEHFIHCQSA-N

SCH-202,596 is a natural product which is a metabolite derived from an Aspergillus fungus. It acts as a selective non-peptide antagonist for the receptor GAL-1, which is usually activated by the neuropeptide galanin. SCH-202,596 is used for scientific research into this still little characterised receptor subtype. [1] [2]

Related Research Articles

<span class="mw-page-title-main">Muscarine</span> Chemical compound

Muscarine, L-(+)-muscarine, or muscarin is a natural product found in certain mushrooms, particularly in Inocybe and Clitocybe species, such as the deadly C. dealbata. Mushrooms in the genera Entoloma and Mycena have also been found to contain levels of muscarine which can be dangerous if ingested. Muscarine has been found in harmless trace amounts in Boletus, Hygrocybe, Lactarius and Russula. Trace concentrations of muscarine are also found in Amanita muscaria, though the pharmacologically more relevant compound from this mushroom is the Z-drug-like alkaloid muscimol. A. muscaria fruitbodies contain a variable dose of muscarine, usually around 0.0003% fresh weight. This is very low and toxicity symptoms occur very rarely. Inocybe and Clitocybe contain muscarine concentrations up to 1.6%.

<span class="mw-page-title-main">Muscimol</span> Neurotransmission inhibitor

Muscimol is one of the principal psychoactive constituents of Amanita muscaria and related species of mushroom. Muscimol is a potent and selective orthosteric agonist for the GABAA receptor and displays sedative-hypnotic, depressant and hallucinogenic psychoactivity. This colorless or white solid is classified as an isoxazole.

<span class="mw-page-title-main">Epibatidine</span> Toxic chemical from some poison dart frogs

Epibatidine is a chlorinated alkaloid that is secreted by the Ecuadoran frog Epipedobates anthonyi and poison dart frogs from the Ameerega genus. It was discovered by John W. Daly in 1974, but its structure was not fully elucidated until 1992. Whether epibatidine occurs naturally remains controversial due to challenges in conclusively identifying the compound from the limited samples collected by Daly. By the time that high-resolution spectrometry was used in 1991, there remained less than one milligram of extract from Daly's samples, raising concerns about possible contamination. Samples from other batches of the same species of frog failed to yield epibatidine.

<span class="mw-page-title-main">Galanin</span> Pharmaceutical compound

Galanin is a neuropeptide encoded by the GAL gene, that is widely expressed in the brain, spinal cord, and gut of humans as well as other mammals. Galanin signaling occurs through three G protein-coupled receptors.

Signaling peptide receptor is a type of receptor which binds one or more signaling peptides or signaling proteins.

The galanin receptor is a G protein-coupled receptor, or metabotropic receptor which binds galanin.

<span class="mw-page-title-main">Muscarinic antagonist</span> Drug that binds to but does not activate muscarinic cholinergic receptors

A muscarinic acetylcholine receptor antagonist, also simply known as a muscarinic antagonist or as an antimuscarinic agent, is a type of anticholinergic drug that blocks the activity of the muscarinic acetylcholine receptors (mAChRs). The muscarinic receptors are proteins involved in the transmission of signals through certain parts of the nervous system, and muscarinic receptor antagonists work to prevent this transmission from occurring. Notably, muscarinic antagonists reduce the activation of the parasympathetic nervous system. The normal function of the parasympathetic system is often summarised as "rest-and-digest", and includes slowing of the heart, an increased rate of digestion, narrowing of the airways, promotion of urination, and sexual arousal. Muscarinic antagonists counter this parasympathetic "rest-and-digest" response, and also work elsewhere in both the central and peripheral nervous systems.

<span class="mw-page-title-main">Galanin receptor 2</span> Protein-coding gene in the species Homo sapiens

Galanin receptor 2, (GAL2) is a G-protein coupled receptor encoded by the GALR2 gene.

<span class="mw-page-title-main">SCH-58261</span> Chemical compound

SCH-58261 is a drug which acts as a potent and selective antagonist for the adenosine receptor A2A, with more than 50x selectivity for A2A over other adenosine receptors. It has been used to investigate the mechanism of action of caffeine, which is a mixed A1 / A2A antagonist, and has shown that the A2A receptor is primarily responsible for the stimulant and ergogenic effects of caffeine, but blockade of both A1 and A2A receptors is required to accurately replicate caffeine's effects in animals. SCH-58261 has also shown antidepressant, nootropic and neuroprotective effects in a variety of animal models, and has been investigated as a possible treatment for Parkinson's disease.

<span class="mw-page-title-main">Cyamemazine</span> Antipsychotic medication

Cyamemazine (Tercian), also known as cyamepromazine, is a typical antipsychotic drug of the phenothiazine class which was introduced by Theraplix in France in 1972 and later in Portugal as well.

<span class="mw-page-title-main">Sarpogrelate</span> Chemical compound

Sarpogrelate is a drug which acts as an antagonist at the serotonin 5-HT2A5-HT2B, and 5-HT2C receptors. However, its affinities for the human 5-HT2C and 5-HT2B receptors are about one and two orders of magnitude lower than for the human 5-HT2A receptor, respectively. The drug blocks serotonin-induced platelet aggregation, and has potential applications in the treatment of many diseases including diabetes mellitus, Buerger's disease, Raynaud's disease, coronary artery disease, angina pectoris, and atherosclerosis.

<span class="mw-page-title-main">SCH-442,416</span> Chemical compound

SCH-442,416 is a highly selective adenosine A2a subtype receptor antagonist. It is widely used in its 11C radiolabelled form to map the distribution of A2a receptors in the brain, where they are mainly found in the striatum, nucleus accumbens, and olfactory tubercle. Given its distribution in the brain, A2a receptors have been investigated for the treatment of various neurological disorders, and SCH-442,416 has shown promise in treatment of depression, Parkinson's disease, and catalepsy.

<span class="mw-page-title-main">UH-232</span> Chemical compound

UH-232 ((+)-UH232) is a drug which acts as a subtype selective mixed agonist-antagonist for dopamine receptors, acting as a weak partial agonist at the D3 subtype, and an antagonist at D2Sh autoreceptors on dopaminergic nerve terminals. It causes dopamine release in the brain and has a stimulant effect, as well as blocking the behavioural effects of cocaine. It may also serve as a 5-HT2A receptor agonist, based on animal studies. It was investigated in clinical trials for the treatment of schizophrenia, but unexpectedly caused symptoms to become worse.

Naloxol is an opioid antagonist closely related to naloxone. It exists in two isomeric forms, α-naloxol and β-naloxol.

<span class="mw-page-title-main">Hydroxyflutamide</span> Chemical compound

Hydroxyflutamide (HF, OHF) (developmental code name SCH-16423), or 2-hydroxyflutamide, is a nonsteroidal antiandrogen (NSAA) and the major active metabolite of flutamide, which is considered to be a prodrug of hydroxyflutamide as the active form. It has been reported to possess an IC50 of 700 nM for the androgen receptor (AR), which is about 4-fold less than that of bicalutamide.

<span class="mw-page-title-main">Cycloclavine</span> Chemical compound

Cycloclavine is an ergot alkaloid. It was first isolated in 1969 from seeds of Ipomoea hildebrandtii vatke. The first total synthesis of (±)-cycloclavine was published in 2008 by Szántay. Further reports came from Wipf and Petronijevic, Cao and Brewer. In 2016, Wipf and McCabe completed an 8-step asymmetric synthesis of (–)-cycloclavine, and in 2018, they expanded this approach toward (+)-cycloclavine and a biological characterization of the binding profile of both enantiomers on 16 brain receptors. Natural (+)- and unnatural (–)-cycloclavine demonstrated significant stereospecificity and unique binding profiles in comparison to LSD, psilocin, and DMT. Differential 5-HT receptor affinities, as well as novel sigma-1 receptor properties, suggest potential future therapeutic opportunities of clavine alkaloid scaffolds.

<span class="mw-page-title-main">HT-2157</span> Chemical compound

HT-2157 is a drug which acts as a selective non-peptide antagonist for the receptor GAL-3, which is usually activated by the neuropeptide galanin. Blocking this receptor with HT-2157 produced increased serotonin release, as well as producing antidepressant and anxiolytic effects in animal studies, and it was also being researched for treatment of cognitive dysfunction. All human clinical trials were terminated due to safety concerns however, and new GAL-3 antagonists are now being sought instead.

<span class="mw-page-title-main">3-PPP</span> Chemical compound

3-PPP (N-n-propyl-3-(3-hydroxyphenyl)piperidine) is a mixed sigma σ1 and σ2 receptor agonist (with similar affinity for both subtypes, though slightly higher affinity for the latter) and D2 receptor partial agonist which is used in scientific research. It shows stereoselectivity in its pharmacodynamics. (+)-3-PPP is the enantiomer that acts as an agonist of the sigma receptors; it is also an agonist of both D2 presynaptic and postsynaptic receptors. Conversely, (−)-3-PPP, also known as preclamol (INNTooltip International Nonproprietary Name), acts as an agonist of presynaptic D2 receptors but as an antagonist of postsynaptic D2 receptors, and has antipsychotic effects. 3-PPP has also been reported to be a monoamine reuptake inhibitor and possibly to act at adrenergic receptors or some other non-sigma receptor.

<span class="mw-page-title-main">Collybolide</span> Chemical compound

Collybolide is a secondary metabolite of the Rhodocollybia maculata mushroom, a basidiomycete fungus that grows on rotting conifer wood. It was previously believed to be a potent and selective kappa-opioid receptor agonist. However, a total synthesis and independent biological assay determined that collybolide neither excites nor suppresses kappa-opioid receptor signaling. Collybolide is unlikely to be psychoactive, although it has been shown to inhibit L-type calcium channels in isolated rat aorta.

References

  1. Min C, Mierzwa R, Truumees I, King A, Sapidou E, Barrabee E, et al. (September 1997). "A new fungal metabolite, Sch 202596, with inhibitory activity in the galanin receptor GALR1 assay". Tetrahedron Letters. 38 (35): 6111–4. doi:10.1016/S0040-4039(97)01385-3.
  2. Katoh T, Ohmori O, Iwasaki K, Inoue M (February 2002). "Synthetic studies on Sch 202596, an antagonist of the galanin receptor subtype GalR1: an efficient synthesis of (±)-geodin, the spirocoumaranone part of Sch 202596". Tetrahedron. 58 (7): 1289–99. doi:10.1016/S0040-4020(01)01250-9.