SEEC microscopy

Last updated
3D Sarfus image of a DNA biochip. Sarfus.DNABiochip.jpg
3D Sarfus image of a DNA biochip.

Surface-enhanced ellipsometric contrast microscopy (SEEC) uses an upright or inverted optical microscope in a crossed polarization configuration and specific supporting plates called surfs on which the sample is deposited for observation. [1] It is described as an optical nanoscopy technique.

Contents

SEEC relies on precise control of the reflection properties of polarized light on a surface, improving the axial sensitivity of an optical microscope by two orders of magnitude without reducing its lateral resolution. [1] Applications could include real-time visualization of films as thin as 0.3 micrometers and isolated nano-objects in air and in water.

Principles

Observation with standard optical microscope between cross polarizers of Langmuir-Blodgett layers (bilayer thickness: 5.4 nm) on silicon wafer and on surf Sarfus LBLayers.JPG
Observation with standard optical microscope between cross polarizers of Langmuir-Blodgett layers (bilayer thickness: 5.4 nm) on silicon wafer and on surf
Light polarization after reflection on a surf (0) and on nanoscale sample on a surf (1). Sarfus PolarisationState.jpg
Light polarization after reflection on a surf (0) and on nanoscale sample on a surf (1).

A 2006 study on polarized light coherence led to the development of new supports (the surfs) having contrast amplification properties for standard optical microscopy in cross-polarizer mode. [2] Made of optical layers on an opaque or transparent substrate, these supports do not modify the light polarization after reflection even if the numerical aperture of the incident source is significant. This property is modified when a sample is present on a surf; a non-null light component is then detected after it has been analyzed, rendering the sample visible.

The performance of these supports is evaluated by measuring the contrast (C) of the sample defined as: C = (I1-I0)/(I0+I1) where I0 and I1 represent the intensities reflected by the bare surf and by the analyzed sample on the surf, respectively. For a one nanometer-film thickness, the surfs display a contrast 200 times higher than on silicon wafer.

This high contrast increase allows the visualization with standard optical microscope of films with thicknesses down to 0.3 nanometers, as well as nano-objects (down to a 2 nanometer diameter) and this, without any kind of sample labeling (neither fluorescence, nor a radioactive marker). An illustration of the contrast enhancement is in the Figure for optical microscopy between cross polarizers of a Langmuir-Blodgett structure on a silicon wafer and on a surf.

Applications

Sarfus images of nanostructures: 1. Copolymer film microstructuration (73 nm), 2. Carbon nanotube bundles, 3. Lipid vesicles in aqueous solutions, 4. Nanopatterning of gold dots (50 nm ). Sarfus ExamplesVisu.jpg
Sarfus images of nanostructures: 1. Copolymer film microstructuration (73 nm), 2. Carbon nanotube bundles, 3. Lipid vesicles in aqueous solutions, 4. Nanopatterning of gold dots (50 nm ).

Life sciences

Thin films and surface treatment

Nano-materials

Commercial applications

Nanolane's Sarfus Mapping Station is based on surface-enhanced ellipsometric contrast microscopy. [10]

Related Research Articles

<span class="mw-page-title-main">Microscopy</span> Viewing of objects which are too small to be seen with the naked eye

Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye. There are three well-known branches of microscopy: optical, electron, and scanning probe microscopy, along with the emerging field of X-ray microscopy.

<span class="mw-page-title-main">Cathodoluminescence</span> Photon emission under the impact of an electron beam

Cathodoluminescence is an optical and electromagnetic phenomenon in which electrons impacting on a luminescent material such as a phosphor, cause the emission of photons which may have wavelengths in the visible spectrum. A familiar example is the generation of light by an electron beam scanning the phosphor-coated inner surface of the screen of a television that uses a cathode-ray tube. Cathodoluminescence is the inverse of the photoelectric effect, in which electron emission is induced by irradiation with photons.

<span class="mw-page-title-main">Raman spectroscopy</span> Spectroscopic technique

Raman spectroscopy is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified.

<span class="mw-page-title-main">Optical microscope</span> Microscope that uses visible light

The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century. Basic optical microscopes can be very simple, although many complex designs aim to improve resolution and sample contrast.

Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. SPM was founded in 1981, with the invention of the scanning tunneling microscope, an instrument for imaging surfaces at the atomic level. The first successful scanning tunneling microscope experiment was done by Gerd Binnig and Heinrich Rohrer. The key to their success was using a feedback loop to regulate gap distance between the sample and the probe.

Phaedon Avouris is a Greek chemical physicist and materials scientist. He is an IBM Fellow and was formerly the group leader for Nanometer Scale Science and Technology at the Thomas J. Watson Research Center in Yorktown Heights, New York. His group did early work on carbon nanotubes, including making the first nanotube transistors.

<span class="mw-page-title-main">Near-field scanning optical microscope</span>

Near-field scanning optical microscopy (NSOM) or scanning near-field optical microscopy (SNOM) is a microscopy technique for nanostructure investigation that breaks the far field resolution limit by exploiting the properties of evanescent waves. In SNOM, the excitation laser light is focused through an aperture with a diameter smaller than the excitation wavelength, resulting in an evanescent field on the far side of the aperture. When the sample is scanned at a small distance below the aperture, the optical resolution of transmitted or reflected light is limited only by the diameter of the aperture. In particular, lateral resolution of 6 nm and vertical resolution of 2–5 nm have been demonstrated.

Nanophotonics or nano-optics is the study of the behavior of light on the nanometer scale, and of the interaction of nanometer-scale objects with light. It is a branch of optics, optical engineering, electrical engineering, and nanotechnology. It often involves dielectric structures such as nanoantennas, or metallic components, which can transport and focus light via surface plasmon polaritons.

<span class="mw-page-title-main">Scanning ion-conductance microscopy</span> Scanning probe microscopy technique that uses an electrode as the probe tip

Scanning ion-conductance microscopy (SICM) is a scanning probe microscopy technique that uses an electrode as the probe tip. SICM allows for the determination of the surface topography of micrometer and even nanometer-range structures in aqueous media conducting electrolytes. The samples can be hard or soft, are generally non-conducting, and the non-destructive nature of the measurement allows for the observation of living tissues and cells, and biological samples in general.

Fluorescence interference contrast (FLIC) microscopy is a microscopic technique developed to achieve z-resolution on the nanometer scale.

<span class="mw-page-title-main">Phase-contrast microscopy</span> Optical microscopy technique

Phase-contrast microscopy (PCM) is an optical microscopy technique that converts phase shifts in light passing through a transparent specimen to brightness changes in the image. Phase shifts themselves are invisible, but become visible when shown as brightness variations.

<span class="mw-page-title-main">Graphene nanoribbon</span> Carbon allotrope

Graphene nanoribbons are strips of graphene with width less than 100 nm. Graphene ribbons were introduced as a theoretical model by Mitsutaka Fujita and coauthors to examine the edge and nanoscale size effect in graphene.

Johan Sebastiaan Ploem is a Dutch microscopist and digital artist. He made significant contribution to the field of fluorescence microscopy, and invented reflection interference contrast microscopy.

Lipid bilayer characterization is the use of various optical, chemical and physical probing methods to study the properties of lipid bilayers. Many of these techniques are elaborate and require expensive equipment because the fundamental nature of the lipid bilayer makes it a very difficult structure to study. An individual bilayer, since it is only a few nanometers thick, is invisible in traditional light microscopy. The bilayer is also a relatively fragile structure since it is held together entirely by non-covalent bonds and is irreversibly destroyed if removed from water. In spite of these limitations dozens of techniques have been developed over the last seventy years to allow investigations of the structure and function of bilayers. The first general approach was to utilize non-destructive in situ measurements such as x-ray diffraction and electrical resistance which measured bilayer properties but did not actually image the bilayer. Later, protocols were developed to modify the bilayer and allow its direct visualization at first in the electron microscope and, more recently, with fluorescence microscopy. Over the past two decades, a new generation of characterization tools including AFM has allowed the direct probing and imaging of membranes in situ with little to no chemical or physical modification. More recently, dual polarisation interferometry has been used to measure the optical birefringence of lipid bilayers to characterise order and disruption associated with interactions or environmental effects.

A model lipid bilayer is any bilayer assembled in vitro, as opposed to the bilayer of natural cell membranes or covering various sub-cellular structures like the nucleus. They are used to study the fundamental properties of biological membranes in a simplified and well-controlled environment, and increasingly in bottom-up synthetic biology for the construction of artificial cells. A model bilayer can be made with either synthetic or natural lipids. The simplest model systems contain only a single pure synthetic lipid. More physiologically relevant model bilayers can be made with mixtures of several synthetic or natural lipids.

<span class="mw-page-title-main">Interference reflection microscopy</span>

Interference reflection microscopy (IRM), also called Reflection Interference Contrast Microscopy (RICM) or Reflection Contrast Microscopy (RCM) depending on the specific optical elements used, is an optical microscopy technique that leverages thin-film interference effects to form an image of an object on a glass surface. The intensity of the signal is a measure of proximity of the object to the glass surface. This technique can be used to study events at the cell membrane without the use of a (fluorescent) label as is the case for TIRF microscopy.

A plasmonic metamaterial is a metamaterial that uses surface plasmons to achieve optical properties not seen in nature. Plasmons are produced from the interaction of light with metal-dielectric materials. Under specific conditions, the incident light couples with the surface plasmons to create self-sustaining, propagating electromagnetic waves known as surface plasmon polaritons (SPPs). Once launched, the SPPs ripple along the metal-dielectric interface. Compared with the incident light, the SPPs can be much shorter in wavelength.

<span class="mw-page-title-main">Photoconductive atomic force microscopy</span> Type of atomic force microscopy

Photoconductive atomic force microscopy (PC-AFM) is a variant of atomic force microscopy that measures photoconductivity in addition to surface forces.

The technique of vibrational analysis with scanning probe microscopy allows probing vibrational properties of materials at the submicrometer scale, and even of individual molecules. This is accomplished by integrating scanning probe microscopy (SPM) and vibrational spectroscopy. This combination allows for much higher spatial resolution than can be achieved with conventional Raman/FTIR instrumentation. The technique is also nondestructive, requires non-extensive sample preparation, and provides more contrast such as intensity contrast, polarization contrast and wavelength contrast, as well as providing specific chemical information and topography images simultaneously.

Tip-enhanced Raman spectroscopy (TERS) is a variant of surface-enhanced Raman spectroscopy (SERS) that combines scanning probe microscopy with Raman spectroscopy. High spatial resolution chemical imaging is possible via TERS, with routine demonstrations of nanometer spatial resolution under ambient laboratory conditions, or better at ultralow temperatures and high pressure.

References

  1. 1 2 Jones-Bey, Hassaun A. (2006-12-01). "MICROSCOPY: Differential-polarization technique enables precise 3-D nanoimaging". Laser Focus World. Retrieved 2024-11-05.
  2. Ausserré D; Valignat MP (2006). "Wide-field optical imaging of surface nanostructures". Nano Letters. 6 (7): 1384–1388. Bibcode:2006NanoL...6.1384A. doi:10.1021/nl060353h. PMID   16834416.
  3. Souplet V, Desmet R, Melnyk O (2007). "Imaging of protein layers with an optical microscope for the characterization of peptide microarrays". J. Pept. Sci. 13 (7): 451–457. doi:10.1002/psc.866. PMID   17559066. S2CID   26078821.
  4. Carion O, Souplet V, Olivier C, Maillet C, Médard N, El-Mahdi O, Durand JO, Melnyk O (2007). "Chemical Micropatterning of Polycarbonate for Site-Specific Peptide Immobilization and Biomolecular Interactions". ChemBioChem. 8 (3): 315–322. doi:10.1002/cbic.200600504. PMID   17226879. S2CID   1770479.
  5. Monot J, Petit M, Lane SM, Guisle I, Léger J, Tellier C, Talham DR, Bujoli B (2008). "Towards zirconium phosphonate-based microarrays for probing DNA-protein interactions: critical influence of the location of the probe anchoring groups". J. Am. Chem. Soc. 130 (19): 6243–6251. doi:10.1021/ja711427q. PMID   18407629.
  6. Yunus S, de Crombrugghe de Looringhe C, Poleunis C, Delcorte A (2007). "Diffusion of oligomers from polydimethylsiloxane stamps in microcontact printing: Surface analysis and possible application". Surf. Interf. Anal. 39 (12–13): 922–925. doi:10.1002/sia.2623. S2CID   93335242.
  7. Burghardt S, Hirsch A, Médard N, Abou-Kachfhe R, Ausserré D, Valignat MP, Gallani JL (2005). "Preparation of highly stable organic steps with a fullerene-based molecule". Langmuir. 21 (16): 7540–7544. doi:10.1021/la051297n. PMID   16042492.
  8. Pauliac-Vaujour E, Stannard A, Martin CP, Blunt MO, Notingher I, Moriarty PJ, Vancea I, Thiele U (2008). "Fingering instabilities in dewetting nanofluids" (PDF). Phys. Rev. Lett. 100 (17): 176102. Bibcode:2008PhRvL.100q6102P. doi:10.1103/PhysRevLett.100.176102. PMID   18518311. S2CID   8047821.
  9. Valles C, Drummond C, Saadaoui H, Furtado CA, He M, Roubeau O, Ortolani L, Monthioux M, Penicaud A (2008). "Solutions of Negatively Charged Graphene Sheets and Ribbons". J. Am. Chem. Soc. 130 (47): 15802–15804. Bibcode:2008JAChS.13015802V. doi:10.1021/ja808001a. PMID   18975900.
  10. Montgomery, P. C.; Leong-Hoi, A. (2015). "Sarfus Mapping Nanoscale Microscopy". Photonics Spectra. 8: 31–44. doi: 10.2147/NSA.S50042 . PMC   4599210 . PMID   26491270.