Lattice light-sheet microscopy

Last updated

Lattice light-sheet microscopy is a modified version of light sheet fluorescence microscopy that increases image acquisition speed while decreasing damage to cells caused by phototoxicity. This is achieved by using a structured light sheet to excite fluorescence in successive planes of a specimen, generating a time series of 3D images which can provide information about dynamic biological processes. [1] [2]

Contents

It was developed in the early 2010s by a team led by Eric Betzig [ citation needed ]. According to an interview conducted by The Washington Post , Betzig believes that this development will have a greater impact than the work that earned him the 2014 Nobel Prize in Chemistry for "the development of super-resolution fluorescence microscopy". [3]

Setup of Lattice Light-sheet Fluorescence Microscopy

(partial) Optical path of a lattice light sheet microscope. (a). from the laser lines and the AOTF, (b). x cylindrical lens, (c). z cylindrical lens, (d). SLM, (e). annulus mask, (f). z and x galvos., (g). excitation objective, (h). observation objective, (i). to EMCCD camera. inset: zoom on the objectives. Optical path of a lattice light sheet microscope.svg
(partial) Optical path of a lattice light sheet microscope. (a). from the laser lines and the AOTF, (b). x cylindrical lens, (c). z cylindrical lens, (d). SLM, (e). annulus mask, (f). z and x galvos., (g). excitation objective, (h). observation objective, (i). to EMCCD camera. inset: zoom on the objectives.

Lattice light sheet microscopy is a novel combination of techniques from Light sheet fluorescence microscopy, Bessel beam microscopy, and Super-resolution microscopy (specifically structured illumination microscopy, SIM [4] ).

In lattice light sheet microscopy, very similarly to light sheet microscopy, the illumination of the sample occurs perpendicular to the image detection. Initially the light sheet is formed by stretching the linearly polarized circular input beam with a pair of cylindrical lenses along the x axis and then compressing it with an additional pair of lenses along the z axis. [5] This modification creates a thin sheet of light that is then projected onto a binary ferroelectric spatial light modulator (SLM). The SLM is a device that spatially varies the waveform of a beam of light. The light that is reflected back from the SLM is used to eliminate unwanted diffraction. Diffraction is eliminated by the transform lens that creates a Fraunhofer diffraction pattern from the reflected light at an opaque mask containing a transparent annulus. [5] Optical lattices are two or three dimensional interference patterns, which here are produced by the transparent annular ring. The mask is conjugate to x and z galvanometers. This quality of the microscope is important for the dithered mode of operation, where the light sheet must be oscillated within the x axis.

The lattice light-sheet microscope has two modes of operation: In the dithered mode, the light sheet is rapidly scanned along the x axis and only one image is recorded per Z plane, at normal diffraction limited resolutions. [1] The second mode of operation is the structured illumination microscopy mode (SIM). SIM is a technique where a grid pattern of excitation light is superimposed on the sample and rotated in steps between the capture of each image. [6] [7] [8] These images are then processed via an algorithm to produce a reconstructed image past the limit of diffraction that is built into our optical instruments.

Theory

Lattice of destructively interfering Bessel beams. (a). schematic of destructive (top) and constructive (bottom) interference patterns between two Bessel beams. Note how the rings between the two centers get attenuated/amplified. (b). interference pattern on a 2D optical lattice created by the interference of Bessel beams. inset: one Bessel function before interference, (c)-left: SLM-mediated selection of a subpattern of the lattice, red: SLM pixels off, -right: view of the incident beam at sample (after dithering the beam in the x direction), (d). Bessel function (left) and its intensity in the Fourier domain (right), and a zoom on the annulus (inset), (e). intensity at the Fourier plane of an array of Bessel beams (left) and its intensity at the object plane (right). Lattice light sheet theory.png
Lattice of destructively interfering Bessel beams. (a). schematic of destructive (top) and constructive (bottom) interference patterns between two Bessel beams. Note how the rings between the two centers get attenuated/amplified. (b). interference pattern on a 2D optical lattice created by the interference of Bessel beams. inset: one Bessel function before interference, (c)-left: SLM-mediated selection of a subpattern of the lattice, red: SLM pixels off, -right: view of the incident beam at sample (after dithering the beam in the x direction), (d). Bessel function (left) and its intensity in the Fourier domain (right), and a zoom on the annulus (inset), (e). intensity at the Fourier plane of an array of Bessel beams (left) and its intensity at the object plane (right).

Lattice light sheet microscopy can be viewed as an improvement of Bessel beam light sheet microscopes [9] in terms of axial resolution (also termed resolution in z). In Bessel beam light sheet microscopes, a non-diffracting Bessel beam is first created then dithered in the x direction in order to produce a sheet. However, the lobes of a Bessel functions carry as much energy as the central spot, resulting in illumination out of the depth of field of the observation objective.

Lattice light sheet microscopy aims at reducing the intensity of the outer lobes of the Bessel functions by destructive interference. To do so, a two-dimensional lattice of regularly spaced Bessel beams is created. Then, destructive interference can be triggered by carefully tuning the spacing between the beams (that is, the period of the lattice).

Practically, the lattice of interfering Bessel beams is engineered by a spatial light modulator (SLM), a liquid-crystal device whose individual pixels can be switched on and off in order to display a binary pattern. Due to the matrix nature of the SLM, the generated pattern contains many unwanted frequencies. Thus, these are filtered out by the means of an annulus placed in a plane conjugated with the back focal plane of the objective (Fourier domain).

Finally, to obtain a uniform intensity at the sample rather than a lattice, the sheet is dithered using a galvanometer oscillating in the x direction.

Improvements On Other Methods

Lattice Light-Sheet Microscopy combines high resolution and clarity at high image acquisition speed, without damaging samples through photobleaching. [1] Photobleaching is a major and highly common problem in fluorescence microscopy wherein fluorescent tags will lose their ability to emit photons upon repeated excitation. Unlike common fluorescence microscopes, samples in a Lattice Light-Sheet Microscope experience photobleaching at a rate drastically reduced when compared to conventional techniques (In conventional techniques, this results in an image signal that gets weaker over the course of multiple excitations). This allows for longer exposures without loss of signal, which in turn allows for video to be captured at over longer periods of time. The Lattice method also has the ability to resolve 200 to 1000 planes per second, an extremely fast imaging rate that allows continuous video capture. This capture rate is one order of magnitude faster than Bessel beam excitation, and two orders of magnitude faster than Spinning Disk Confocal Microscopy. [1] These two advantages combine to allow researchers to take very detailed movies over long periods of time.

Limitations

Lattice light sheet microscopy is limited to transparent and thin samples to achieve good image quality. The quality of image acquired degrades with imaging depth. This phenomenon occurs due to sample-induced aberrations, and it has been proposed that imaging samples to beyond 20 to 100 μm will require adaptive optics. [1]

Resolution

Contrast

Depth into sample

Applications

Lattice light sheet microscopy is useful for in-vivo cellular localization and super resolution. Lattice light sheets' confined excitation band keeps nearly all illuminated cells in focus. The reduction of large, out of focus spots allow precise tracking of individual cells at a high molecular density, a capability unattainable through previous microscopy methods. [1] Consequently, lattice light sheet is being used for a number of dynamic cellular interactions. The decrease in phototoxicity has created opportunities to study the subcellular processes of embryos without damaging their living tissues. Studies have examined and quantified the extent of the highly variable growth patterns of microtubules throughout mitosis. Dictyostelium discoideum (slime mold) cells were imaged during their rapid chemotactic movement toward one another and the initial contact.

The aggregation of T cell and target cells was observed, along with the subsequent formation of the immunological synapse. The advancements of the lattice sheet method revealed three-dimensional movement patterns of actin as well as lamellipodial protrusion in these interactions. The increase in imaging speed also allowed the observation of fast moving neutrophils through the extracellular matrix in another study[ citation needed ].

The technique, along with chemical and genetic manipulation techniques, was used to capture a live image of a virus (a virus that was engineered to spike COVID-19 proteins) infecting a cell, by injecting its genetic material into the cell's endosome for the first time, at Harvard Medical School, in cooperation with other institutions. [10] [11]

Future work

The technique is being actively developed at the Janelia Research Campus of the Howard Hughes Medical Institute. [12] Eric Betzig has stated that his goal is to combine his work on microscopy to develop a "high-speed, high-resolution, low-impact tool that can look deep inside biological systems." [3] Penetration deeper than 20-100 μm may be achieved by combining lattice light-sheet microscopy with adaptive optics. [1]

Related Research Articles

<span class="mw-page-title-main">Microscopy</span> Viewing of objects which are too small to be seen with the naked eye

Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye. There are three well-known branches of microscopy: optical, electron, and scanning probe microscopy, along with the emerging field of X-ray microscopy.

<span class="mw-page-title-main">Microscope</span> Scientific instrument

A microscope is a laboratory instrument used to examine objects that are too small to be seen by the naked eye. Microscopy is the science of investigating small objects and structures using a microscope. Microscopic means being invisible to the eye unless aided by a microscope.

<span class="mw-page-title-main">Optical microscope</span> Microscope that uses visible light

The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century. Basic optical microscopes can be very simple, although many complex designs aim to improve resolution and sample contrast.

<span class="mw-page-title-main">Diffraction-limited system</span> Optical system with resolution performance at the instruments theoretical limit

In optics, any optical instrument or system – a microscope, telescope, or camera – has a principal limit to its resolution due to the physics of diffraction. An optical instrument is said to be diffraction-limited if it has reached this limit of resolution performance. Other factors may affect an optical system's performance, such as lens imperfections or aberrations, but these are caused by errors in the manufacture or calculation of a lens, whereas the diffraction limit is the maximum resolution possible for a theoretically perfect, or ideal, optical system.

A total internal reflection fluorescence microscope (TIRFM) is a type of microscope with which a thin region of a specimen, usually less than 200 nanometers can be observed.

<span class="mw-page-title-main">Fluorescence microscope</span> Optical microscope that uses fluorescence and phosphorescence

A fluorescence microscope is an optical microscope that uses fluorescence instead of, or in addition to, scattering, reflection, and attenuation or absorption, to study the properties of organic or inorganic substances. "Fluorescence microscope" refers to any microscope that uses fluorescence to generate an image, whether it is a simple set up like an epifluorescence microscope or a more complicated design such as a confocal microscope, which uses optical sectioning to get better resolution of the fluorescence image.

<span class="mw-page-title-main">Confocal microscopy</span> Optical imaging technique

Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. Capturing multiple two-dimensional images at different depths in a sample enables the reconstruction of three-dimensional structures within an object. This technique is used extensively in the scientific and industrial communities and typical applications are in life sciences, semiconductor inspection and materials science.

<span class="mw-page-title-main">Near-field scanning optical microscope</span>

Near-field scanning optical microscopy (NSOM) or scanning near-field optical microscopy (SNOM) is a microscopy technique for nanostructure investigation that breaks the far field resolution limit by exploiting the properties of evanescent waves. In SNOM, the excitation laser light is focused through an aperture with a diameter smaller than the excitation wavelength, resulting in an evanescent field on the far side of the aperture. When the sample is scanned at a small distance below the aperture, the optical resolution of transmitted or reflected light is limited only by the diameter of the aperture. In particular, lateral resolution of 6 nm and vertical resolution of 2–5 nm have been demonstrated.

<span class="mw-page-title-main">STED microscopy</span>

Stimulated emission depletion (STED) microscopy is one of the techniques that make up super-resolution microscopy. It creates super-resolution images by the selective deactivation of fluorophores, minimizing the area of illumination at the focal point, and thus enhancing the achievable resolution for a given system. It was developed by Stefan W. Hell and Jan Wichmann in 1994, and was first experimentally demonstrated by Hell and Thomas Klar in 1999. Hell was awarded the Nobel Prize in Chemistry in 2014 for its development. In 1986, V.A. Okhonin had patented the STED idea. This patent was unknown to Hell and Wichmann in 1994.

RESOLFT, an acronym for REversible Saturable OpticaLFluorescence Transitions, denotes a group of optical fluorescence microscopy techniques with very high resolution. Using standard far field visible light optics a resolution far below the diffraction limit down to molecular scales can be obtained.

<span class="mw-page-title-main">Dark-field microscopy</span> Laboratory technique

Dark-field microscopy describes microscopy methods, in both light and electron microscopy, which exclude the unscattered beam from the image. As a result, the field around the specimen is generally dark.

Super-resolution microscopy is a series of techniques in optical microscopy that allow such images to have resolutions higher than those imposed by the diffraction limit, which is due to the diffraction of light. Super-resolution imaging techniques rely on the near-field or on the far-field. Among techniques that rely on the latter are those that improve the resolution only modestly beyond the diffraction-limit, such as confocal microscopy with closed pinhole or aided by computational methods such as deconvolution or detector-based pixel reassignment, the 4Pi microscope, and structured-illumination microscopy technologies such as SIM and SMI.

Photo-activated localization microscopy and stochastic optical reconstruction microscopy (STORM) are widefield fluorescence microscopy imaging methods that allow obtaining images with a resolution beyond the diffraction limit. The methods were proposed in 2006 in the wake of a general emergence of optical super-resolution microscopy methods, and were featured as Methods of the Year for 2008 by the Nature Methods journal. The development of PALM as a targeted biophysical imaging method was largely prompted by the discovery of new species and the engineering of mutants of fluorescent proteins displaying a controllable photochromism, such as photo-activatible GFP. However, the concomitant development of STORM, sharing the same fundamental principle, originally made use of paired cyanine dyes. One molecule of the pair, when excited near its absorption maximum, serves to reactivate the other molecule to the fluorescent state.

<span class="mw-page-title-main">Light sheet fluorescence microscopy</span> Fluorescence microscopy technique

Light sheet fluorescence microscopy (LSFM) is a fluorescence microscopy technique with an intermediate-to-high optical resolution, but good optical sectioning capabilities and high speed. In contrast to epifluorescence microscopy only a thin slice of the sample is illuminated perpendicularly to the direction of observation. For illumination, a laser light-sheet is used, i.e. a laser beam which is focused only in one direction. A second method uses a circular beam scanned in one direction to create the lightsheet. As only the actually observed section is illuminated, this method reduces the photodamage and stress induced on a living sample. Also the good optical sectioning capability reduces the background signal and thus creates images with higher contrast, comparable to confocal microscopy. Because light sheet fluorescence microscopy scans samples by using a plane of light instead of a point, it can acquire images at speeds 100 to 1,000 times faster than those offered by point-scanning methods.

<span class="mw-page-title-main">Eric Betzig</span> American physicist

Robert Eric Betzig is an American physicist who works as a professor of physics and professor of molecular and cell biology at the University of California, Berkeley. He is also a senior fellow at the Janelia Farm Research Campus in Ashburn, Virginia.

Wide-field multiphoton microscopy refers to an optical non-linear imaging technique tailored for ultrafast imaging in which a large area of the object is illuminated and imaged without the need for scanning. High intensities are required to induce non-linear optical processes such as two-photon fluorescence or second harmonic generation. In scanning multiphoton microscopes the high intensities are achieved by tightly focusing the light, and the image is obtained by beam scanning. In wide-field multiphoton microscopy the high intensities are best achieved using an optically amplified pulsed laser source to attain a large field of view (~100 µm). The image in this case is obtained as a single frame with a CCD without the need of scanning, making the technique particularly useful to visualize dynamic processes simultaneously across the object of interest. With wide-field multiphoton microscopy the frame rate can be increased up to a 1000-fold compared to multiphoton scanning microscopy. Wide-field multiphoton microscopes are not yet commercially available, but working prototypes exist in several optics laboratories.

Super-resolution dipole orientation mapping (SDOM) is a form of fluorescence polarization microscopy (FPM) that achieved super resolution through polarization demodulation. It was first described by Karl Zhanghao and others in 2016. Fluorescence polarization (FP) is related to the dipole orientation of chromophores, making fluorescence polarization microscopy possible to reveal structures and functions of tagged cellular organelles and biological macromolecules. In addition to fluorescence intensity, wavelength, and lifetime, the fourth dimension of fluorescence—polarization—can also provide intensity modulation without the restriction to specific fluorophores; its investigation in super-resolution microscopy is still in its infancy.

Super-resolution photoacoustic imaging is a set of techniques used to enhance spatial resolution in photoacoustic imaging. Specifically, these techniques primarily break the optical diffraction limit of the photoacoustic imaging system. It can be achieved in a variety of mechanisms, such as blind structured illumination, multi-speckle illumination, or photo-imprint photoacoustic microscopy in Figure 1.

Three-photon microscopy (3PEF) is a high-resolution fluorescence microscopy based on nonlinear excitation effect. Different from two photon excitation microscopy, it uses three exciting photons. It typically uses 1300 nm or longer wavelength lasers to excite the fluorescent dyes with three simultaneously absorbed photons. The fluorescent dyes then emit one photon whose energy is three times the energy of each incident photon. Compared to two-photon microscopy, three-photon microscopy reduces the fluorescence away from the focal plane by , which is much faster than that of two-photon microscopy by . In addition, three-photon microscopy employs near-infrared light with less tissue scattering effect. This causes three photon microscopy to have higher resolution than conventional microscopy.

Structured illumination light sheet microscopy (SI-LSM) is an optical imaging technique used for achieving volumetric imaging with high temporal and spatial resolution in all three dimensions. It combines the ability of light sheet microscopy to maintain spatial resolution throughout relatively thick samples with the higher axial and spatial resolution characteristic of structured illumination microscopy. SI-LSM can achieve lateral resolution below 100 nm in biological samples hundreds of micrometers thick.

References

  1. 1 2 3 4 5 6 7 Chen, B.-C.; Legant, W. R.; Wang, K.; Shao, L.; Milkie, D. E.; Davidson, M. W.; Janetopoulos, C.; Wu, X. S.; Hammer, J. A.; Liu, Z.; English, B. P.; Mimori-Kiyosue, Y.; Romero, D. P.; Ritter, A. T.; Lippincott-Schwartz, J.; Fritz-Laylin, L.; Mullins, R. D.; Mitchell, D. M.; Bembenek, J. N.; Reymann, A.-C.; Bohme, R.; Grill, S. W.; Wang, J. T.; Seydoux, G.; Tulu, U. S.; Kiehart, D. P.; Betzig, E. (23 October 2014). "Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution". Science. 346 (6208): 1257998. doi:10.1126/science.1257998. PMC   4336192 . PMID   25342811.
  2. Keely, Jim; Gutnikoff, Robert (23 October 2014). "New Microscope Collects Dynamic Images of the Molecules that Animate Life". HHMI News. Chevy Chase, MD: Howard Hughes Medical Institute. Retrieved 28 October 2014.
  3. 1 2 Feltman, Rachel (23 October 2014). "Weeks after winning a Nobel Prize for his microscope, Eric Betzig just revolutionized microscopy again". Washington Post Speaking of Science blog. Retrieved 4 September 2015.
  4. Guerra, John M. (1995-06-26). "Super‐resolution through illumination by diffraction‐born evanescent waves". Applied Physics Letters. 66 (26): 3555–3557. doi:10.1063/1.113814. ISSN   0003-6951.
  5. 1 2 Chen, B.-C.; Legant, W. R.; Wang, K.; Shao, L.; Milkie, D. E.; Davidson, M. W.; Janetopoulos, C.; Wu, X. S.; Hammer, J. A.; Liu, Z.; English, B. P.; Mimori-Kiyosue, Y.; Romero, D. P.; Ritter, A. T.; Lippincott-Schwartz, J.; Fritz-Laylin, L.; Mullins, R. D.; Mitchell, D. M.; Bembenek, J. N.; Reymann, A.-C.; Bohme, R.; Grill, S. W.; Wang, J. T.; Seydoux, G.; Tulu, U. S.; Kiehart, D. P.; Betzig, E. (23 October 2014). "Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution," Supplementary Materials. Science 346 (6208): 1257998–1257998.
  6. Guerra, John M. (1995-06-26). "Super‐resolution through illumination by diffraction‐born evanescent waves". Applied Physics Letters. 66 (26): 3555–3557. doi:10.1063/1.113814. ISSN   0003-6951.
  7. U.S. Pat. No. 5,666,197: Apparatus and methods employing phase control and analysis of evanescent illumination for imaging and metrology of subwavelength lateral surface topography; September 1997; John M. Guerra. Assigned to Polaroid Corp.
  8. Gustafsson, MG; Shao, L; Carlton, PM; Wang, CJ; Golubovskaya, IN; Cande, WZ; Agard, DA; Sedat, JW (June 2008). "Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination". Biophysical Journal. 94 (12): 4957–70. Bibcode:2008BpJ....94.4957G. doi:10.1529/biophysj.107.120345. PMC   2397368 . PMID   18326650.
  9. Planchon, Thomas A; Gao, Liang; Milkie, Daniel E; Davidson, Michael W; Galbraith, James A; Galbraith, Catherine G; Betzig, Eric (2011). "Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination". Nature Methods. 8 (5): 417–423. doi:10.1038/nmeth.1586. PMC   3626440 . PMID   21378978.
  10. "Breaking and Entering".
  11. Kreutzberger, Alex J. B.; Sanyal, Anwesha; Saminathan, Anand; Bloyet, Louis-Marie; Stumpf, Spencer; Liu, Zhuoming; Ojha, Ravi; Patjas, Markku T.; Geneid, Ahmed; Scanavachi, Gustavo; Doyle, Catherine A.; Somerville, Elliott; Da Cunha Correia, Ricardo Bango; Di Caprio, Giuseppe; Toppila-Salmi, Sanna; Mäkitie, Antti; Kiessling, Volker; Vapalahti, Olli; Whelan, Sean P. J.; Balistreri, Giuseppe; Kirchhausen, Tom (20 September 2022). "SARS-CoV-2 requires acidic pH to infect cells". Proceedings of the National Academy of Sciences. 119 (38): e2209514119. doi:10.1073/pnas.2209514119. PMC   9196115 . PMID   36048924.
  12. Kresge, Nicole. "Microscopes for the Masses". HHMI Bulletin. Howard Hughes Medical Institute. Retrieved 4 September 2015.