SETD6

Last updated
SETD6
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases SETD6 , SET domain containing 6, SET domain containing 6, protein lysine methyltransferase
External IDs OMIM: 616424 MGI: 1913333 HomoloGene: 38743 GeneCards: SETD6
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001160305
NM_024860

NM_001035123

RefSeq (protein)

NP_001153777
NP_079136

NP_001030295
NP_001355283

Location (UCSC) Chr 16: 58.52 – 58.52 Mb Chr 8: 95.72 – 95.72 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

SET domain containing 6 is a protein in humans that is encoded by the SETD6 gene. [5]

SETD6 monomethylates the RelA subunit of nuclear factor kappa B (NF-κB). RelA mono-methylation at lysine 310 (RelAK310me1) leads to the constitutive repression of RelA target genes by recruiting the PKMT G9a-like protein (GLP), which catalyzes H3K9me2 and leads to chromatin silencing and gene repression. In response to stimulation with TNFa and lipopolysaccharide, phosphorylation of RelA at serine 311 (RelAS311ph) by PKCzeta physically blocks the interaction between GLP and RelAK310me1, leading to transcription activation. [6]

PAK4 Methylation by SETD6 Promotes the Activation of the Wnt/β-Catenin Pathway. SETD6 binds and methylates PAK4 both in vitro and in cells at chromatin. Depletion of SETD6 in various cell lines leads to a dramatic reduction in the expression of Wnt/�-catenin target genes. [7]

SETD6 binds to but does not methylate DJ1. Under basal conditions, SETD6 and DJ1 associate with chromatin which inhibits DJ1 to activate Nrf2 transcription activity. In response to oxidative stress, SETD6 mRNA and protein levels are dramatically reduced. [8]

SETD6 specifically binds and methylates PLK1 during mitosis at K209 and K413. Depletion of SETD6, as well as the double substitution of the lysine residues (K209/413R), leads to elevation in PLK1 catalytic activity, leading to the acceleration of the different mitotic steps, ending with early cytokinesis. [9]

Related Research Articles

<span class="mw-page-title-main">Histone methyltransferase</span> Histone-modifying enzymes

Histone methyltransferases (HMT) are histone-modifying enzymes, that catalyze the transfer of one, two, or three methyl groups to lysine and arginine residues of histone proteins. The attachment of methyl groups occurs predominantly at specific lysine or arginine residues on histones H3 and H4. Two major types of histone methyltranferases exist, lysine-specific and arginine-specific. In both types of histone methyltransferases, S-Adenosyl methionine (SAM) serves as a cofactor and methyl donor group.
The genomic DNA of eukaryotes associates with histones to form chromatin. The level of chromatin compaction depends heavily on histone methylation and other post-translational modifications of histones. Histone methylation is a principal epigenetic modification of chromatin that determines gene expression, genomic stability, stem cell maturation, cell lineage development, genetic imprinting, DNA methylation, and cell mitosis.

Histone methylation is a process by which methyl groups are transferred to amino acids of histone proteins that make up nucleosomes, which the DNA double helix wraps around to form chromosomes. Methylation of histones can either increase or decrease transcription of genes, depending on which amino acids in the histones are methylated, and how many methyl groups are attached. Methylation events that weaken chemical attractions between histone tails and DNA increase transcription because they enable the DNA to uncoil from nucleosomes so that transcription factor proteins and RNA polymerase can access the DNA. This process is critical for the regulation of gene expression that allows different cells to express different genes.

<span class="mw-page-title-main">Methyltransferase</span> Group of methylating enzymes

Methyltransferases are a large group of enzymes that all methylate their substrates but can be split into several subclasses based on their structural features. The most common class of methyltransferases is class I, all of which contain a Rossmann fold for binding S-Adenosyl methionine (SAM). Class II methyltransferases contain a SET domain, which are exemplified by SET domain histone methyltransferases, and class III methyltransferases, which are membrane associated. Methyltransferases can also be grouped as different types utilizing different substrates in methyl transfer reactions. These types include protein methyltransferases, DNA/RNA methyltransferases, natural product methyltransferases, and non-SAM dependent methyltransferases. SAM is the classical methyl donor for methyltransferases, however, examples of other methyl donors are seen in nature. The general mechanism for methyl transfer is a SN2-like nucleophilic attack where the methionine sulfur serves as the leaving group and the methyl group attached to it acts as the electrophile that transfers the methyl group to the enzyme substrate. SAM is converted to S-Adenosyl homocysteine (SAH) during this process. The breaking of the SAM-methyl bond and the formation of the substrate-methyl bond happen nearly simultaneously. These enzymatic reactions are found in many pathways and are implicated in genetic diseases, cancer, and metabolic diseases. Another type of methyl transfer is the radical S-Adenosyl methionine (SAM) which is the methylation of unactivated carbon atoms in primary metabolites, proteins, lipids, and RNA.

The histone code is a hypothesis that the transcription of genetic information encoded in DNA is in part regulated by chemical modifications to histone proteins, primarily on their unstructured ends. Together with similar modifications such as DNA methylation it is part of the epigenetic code. Histones associate with DNA to form nucleosomes, which themselves bundle to form chromatin fibers, which in turn make up the more familiar chromosome. Histones are globular proteins with a flexible N-terminus that protrudes from the nucleosome. Many of the histone tail modifications correlate very well to chromatin structure and both histone modification state and chromatin structure correlate well to gene expression levels. The critical concept of the histone code hypothesis is that the histone modifications serve to recruit other proteins by specific recognition of the modified histone via protein domains specialized for such purposes, rather than through simply stabilizing or destabilizing the interaction between histone and the underlying DNA. These recruited proteins then act to alter chromatin structure actively or to promote transcription. For details of gene expression regulation by histone modifications see table below.

<span class="mw-page-title-main">RELA</span> Protein-coding gene in the species Homo sapiens

Transcription factor p65 also known as nuclear factor NF-kappa-B p65 subunit is a protein that in humans is encoded by the RELA gene.

<span class="mw-page-title-main">EZH2</span> Protein-coding gene in the species Homo sapiens

Enhancer of zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase enzyme encoded by EZH2 gene, that participates in histone methylation and, ultimately, transcriptional repression. EZH2 catalyzes the addition of methyl groups to histone H3 at lysine 27, by using the cofactor S-adenosyl-L-methionine. Methylation activity of EZH2 facilitates heterochromatin formation thereby silences gene function. Remodeling of chromosomal heterochromatin by EZH2 is also required during cell mitosis.

<span class="mw-page-title-main">SETDB1</span> Enzyme-coding gene in humans

Histone-lysine N-methyltransferase SETDB1 is an enzyme that in humans is encoded by the SETDB1 gene. SETDB1 is also known as KMT1E or H3K9 methyltransferase ESET.

<span class="mw-page-title-main">EHMT2</span>

Euchromatic histone-lysine N-methyltransferase 2 (EHMT2), also known as G9a, is a histone methyltransferase enzyme that in humans is encoded by the EHMT2 gene. G9a catalyzes the mono- and di-methylated states of histone H3 at lysine residue 9 and lysine residue 27.

<span class="mw-page-title-main">SUZ12</span>

Polycomb protein SUZ12 is a protein that in humans is encoded by the SUZ12 gene.

<span class="mw-page-title-main">ZBTB33</span> Protein-coding gene in the species Homo sapiens

Transcriptional regulator Kaiso is a protein that in humans is encoded by the ZBTB33 gene. This gene encodes a transcriptional regulator with bimodal DNA-binding specificity, which binds to methylated CGCG and also to the non-methylated consensus KAISO-binding site TCCTGCNA. The protein contains an N-terminal POZ/BTB domain and 3 C-terminal zinc finger motifs. It recruits the N-CoR repressor complex to promote histone deacetylation and the formation of repressive chromatin structures in target gene promoters. It may contribute to the repression of target genes of the Wnt signaling pathway, and may also activate transcription of a subset of target genes by the recruitment of catenin delta-2 (CTNND2). Its interaction with catenin delta-1 (CTNND1) inhibits binding to both methylated and non-methylated DNA. It also interacts directly with the nuclear import receptor Importin-α2, which may mediate nuclear import of this protein. Alternatively spliced transcript variants encoding the same protein have been identified.

<span class="mw-page-title-main">SETD7</span>

Histone-lysine N-methyltransferase SETD7 is an enzyme that in humans is encoded by the SETD7 gene.

<span class="mw-page-title-main">SETD2</span>

SET domain containing 2 is an enzyme that in humans is encoded by the SETD2 gene.

<span class="mw-page-title-main">KMT5A</span>

N-lysine methyltransferase KMT5A is an enzyme that in humans is encoded by the KMT5A gene. The enzyme is a histone methyltransferase, SET domain-containing and lysine-specific. The enzyme transfers one methyl group to histone H4 lysine residue at position 20. S-Adenosyl methionine (SAM) is both the cofactor and the methyl group donor. The lysine residue is converted to N6-methyllysine residue.

<span class="mw-page-title-main">KMT5B</span>

Histone-lysine N-methyltransferase KMT5B is an enzyme that in humans is encoded by the KMT5B gene. The enzyme along with WHSC1 is responsible for dimethylation of lysine 20 on histone H4 in mouse and humans.

<span class="mw-page-title-main">SET domain</span>

The SET domain is a protein domain that typically has methyltransferase activity. It was originally identified as part of a larger conserved region present in the Drosophila Trithorax protein and was subsequently identified in the Drosophila Su(var)3-9 and 'Enhancer of zeste' proteins, from which the acronym SET is derived [Su(var)3-9, Enhancer-of-zeste and Trithorax].

<span class="mw-page-title-main">EHMT1</span> Protein-coding gene in the species Homo sapiens

Euchromatic histone-lysine N-methyltransferase 1, also known as G9a-like protein (GLP), is a protein that in humans is encoded by the EHMT1 gene.

Doctor Baek Sung-hee is a South Korean scientist specialising in molecular genetics. Her work is focused on the chromatin dynamics and epigenetic regulatory mechanism in cancer. She received her BS, MS, and Ph.D degrees from Seoul National University. Following her postdoctoral research in Michael Rosenfeld’s lab at HHMI and following research assistant professor at HHMI, she joined the faculty of Seoul National University in 2003, and now works as an associate professor. Dr. Baek received numerous awards and honors, including the L’Oreal-UNESCO for Women in Science Award.

Protein methylation is a type of post-translational modification featuring the addition of methyl groups to proteins. It can occur on the nitrogen-containing side-chains of arginine and lysine, but also at the amino- and carboxy-termini of a number of different proteins. In biology, methyltransferases catalyze the methylation process, activated primarily by S-adenosylmethionine. Protein methylation has been most studied in histones, where the transfer of methyl groups from S-adenosyl methionine is catalyzed by histone methyltransferases. Histones that are methylated on certain residues can act epigenetically to repress or activate gene expression.

H3K27me3 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the tri-methylation of lysine 27 on histone H3 protein.

<span class="mw-page-title-main">SETD3 (gene)</span>

SET domain containing 3 (SETD3) is a protein that in humans is encoded by the SETD3 gene. It is a methyl transferase implicated in the replication of all enteroviruses. A mouse line deficient in SETD3 expression was shown to be immune to enterovirus infection. This could pave the way for the prevention of diseases like the common cold, myocarditis, aseptic meningitis and polio. SETD3 is capable of methylating the cytoskeletal protein actin on histidine residues.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000103037 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000031671 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: SET domain containing 6".
  6. Levy D, Kuo AJ, Chang Y, Schaefer U, Kitson C, Cheung P, Espejo A, Zee BM, Liu CL, Tangsombatvisit S, Tennen RI, Kuo AY, Tanjing S, Cheung R, Chua KF, Utz PJ, Shi X, Prinjha RK, Lee K, Garcia BA, Bedford MT, Tarakhovsky A, Cheng X, Gozani O (January 2011). "Lysine methylation of the NF-κB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-κB signaling". Nature Immunology. 12 (1): 29–36. doi:10.1038/ni.1968. PMC   3074206 . PMID   21131967.
  7. Vershinin Z, Feldman M, Chen A, Levy D (March 2016). "PAK4 Methylation by SETD6 Promotes the Activation of the Wnt/β-Catenin Pathway". The Journal of Biological Chemistry. 291 (13): 6786–95. doi: 10.1074/jbc.M115.697292 . PMC   4807267 . PMID   26841865.
  8. Chen A, Feldman M, Vershinin Z, Levy D (February 2016). "SETD6 is a negative regulator of oxidative stress response". Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 1859 (2): 420–7. doi:10.1016/j.bbagrm.2016.01.003. PMID   26780326.
  9. Feldman M, Vershinin Z, Goliand I, Elia N, Levy D (January 2019). "The methyltransferase SETD6 regulates Mitotic progression through PLK1 methylation". Proceedings of the National Academy of Sciences of the United States of America. 116 (4): 1235–1240. Bibcode:2019PNAS..116.1235F. doi: 10.1073/pnas.1804407116 . PMC   6347700 . PMID   30622182.

Further reading