SFRS7

Last updated
SRSF7
Protein SFRS7 PDB 2hvz.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases SRSF7 , 9G8, AAG3, SFRS7, serine/arginine-rich splicing factor 7, serine and arginine rich splicing factor 7
External IDs OMIM: 600572 MGI: 1926232 HomoloGene: 134446 GeneCards: SRSF7
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001031684
NM_001195446
NM_006276
NM_001363802

NM_001195485
NM_001195486
NM_001195487
NM_146083
NM_001360435

Contents

RefSeq (protein)

NP_001026854
NP_001182375
NP_001350731

NP_001182414
NP_001182415
NP_001182416
NP_666195
NP_001347364

Location (UCSC) Chr 2: 38.74 – 38.75 Mb Chr 17: 80.51 – 80.51 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Serine/arginine-rich splicing factor 7 (SRSF7) also known as splicing factor, arginine/serine-rich 7 (SFRS7) or splicing factor 9G8 is a protein that in humans is encoded by the SRSF7 gene. [5]

Function

The protein encoded by this gene is a member of the serine/arginine (SR)-rich family of pre-mRNA splicing factors, which constitute part of the spliceosome. Each of these factors contains an RNA recognition motif (RRM) for binding RNA and an RS domain for binding other proteins. The RS domain is rich in serine and arginine residues and facilitates interaction between different SR splicing factors. In addition to being critical for mRNA splicing, the SR proteins have also been shown to be involved in mRNA export from the nucleus and in translation. [5]

Model organisms

Model organisms have been used in the study of SRSF7 function. A conditional knockout mouse line called Srsf7tm1a(EUCOMM)Wtsi was generated at the Wellcome Trust Sanger Institute. [6] Male and female animals underwent a standardized phenotypic screen [7] to determine the effects of deletion. [8] [9] [10] [11] Additional screens performed: - In-depth immunological phenotyping [12]

Related Research Articles

<span class="mw-page-title-main">GRB7</span> Protein-coding gene in the species Homo sapiens

Growth factor receptor-bound protein 7, also known as GRB7, is a protein that in humans is encoded by the GRB7 gene.

<span class="mw-page-title-main">HNRNPK</span> Human protein and coding gene

Heterogeneous nuclear ribonucleoprotein K is a protein that in humans is encoded by the HNRNPK gene. It is found in the cell nucleus that binds to pre-messenger RNA (mRNA) as a component of heterogeneous ribonucleoprotein particles. The simian homolog is known as protein H16. Both proteins bind to single-stranded DNA as well as to RNA and can stimulate the activity of RNA polymerase II, the protein responsible for most gene transcription. The relative affinities of the proteins for DNA and RNA vary with solution conditions and are inversely correlated, so that conditions promoting strong DNA binding result in weak RNA binding.

snRNP70 Protein-coding gene in the species Homo sapiens

snRNP70 also known as U1 small nuclear ribonucleoprotein 70 kDa is a protein that in humans is encoded by the SNRNP70 gene. snRNP70 is a small nuclear ribonucleoprotein that associates with U1 spliceosomal RNA, forming the U1snRNP a core component of the spliceosome. The U1-70K protein and other components of the spliceosome complex form detergent-insoluble aggregates in both sporadic and familial human cases of Alzheimer's disease. U1-70K co-localizes with Tau in neurofibrillary tangles in Alzheimer's disease.

<span class="mw-page-title-main">ILF3</span> Protein-coding gene in the species Homo sapiens

Interleukin enhancer-binding factor 3 is a protein that in humans is encoded by the ILF3 gene.

<span class="mw-page-title-main">CDC5L</span> Protein-coding gene in the species Homo sapiens

Cell division cycle 5-like protein is a protein that in humans is encoded by the CDC5L gene.

<span class="mw-page-title-main">SRPK1</span> Protein-coding gene in the species Homo sapiens

Serine/arginine-Rich Splicing Factor (SRSF) protein kinase-1 SRPK1 is an enzyme that in humans is encoded by the SRPK1 gene.

<span class="mw-page-title-main">Protein arginine methyltransferase 5</span> Protein-coding gene in the species Homo sapiens

Protein arginine N-methyltransferase 5 is an enzyme that in humans is encoded by the PRMT5 gene. PRMT5 symmetrically dimethylates H2AR3, H4R3, H3R2, and H3R8 in vivo, all of which are linked to a range of transcriptional regulatory events.

<span class="mw-page-title-main">RNPS1</span> Protein-coding gene in the species Homo sapiens

RNA-binding protein with serine-rich domain 1 is a protein that in humans is encoded by the RNPS1 gene.

<span class="mw-page-title-main">SFRS3</span> Protein-coding gene in the species Homo sapiens

Splicing factor, arginine/serine-rich 3 is a protein that in humans is encoded by the SFRS3 gene.

<span class="mw-page-title-main">SFRS9</span> Protein-coding gene in the species Homo sapiens

Splicing factor, arginine/serine-rich 9, also known as SFRS9, is a human gene encoding an SR protein involved in splice site selection in alternative splicing.

<span class="mw-page-title-main">SFRS5</span> Protein-coding gene in the species Homo sapiens

Splicing factor, arginine/serine-rich 5 is a protein that in humans is encoded by the SFRS5 gene.

<span class="mw-page-title-main">CLK1</span> Protein-coding gene in the species Homo sapiens

Dual specificity protein kinase CLK1 is an enzyme that in humans is encoded by the CLK1 gene.

<span class="mw-page-title-main">FUSIP1</span> Protein-coding gene in the species Homo sapiens

FUS-interacting serine-arginine-rich protein 1 is a protein that in humans is encoded by the SFRS13A gene.

<span class="mw-page-title-main">CLK2</span> Protein-coding gene in the species Homo sapiens

Dual specificity protein kinase CLK2 is an enzyme that in humans is encoded by the CLK2 gene.

<span class="mw-page-title-main">Transcription initiation protein SPT3 homolog</span> Protein-coding gene in the species Homo sapiens

Transcription initiation protein SPT3 homolog is a protein that in humans is encoded by the SUPT3H gene.

<span class="mw-page-title-main">SNAPC4</span> Protein-coding gene in the species Homo sapiens

snRNA-activating protein complex subunit 4 is a protein that in humans is encoded by the SNAPC4 gene.

<span class="mw-page-title-main">SFRS11</span> Protein-coding gene in the species Homo sapiens

Splicing factor, arginine/serine-rich 11 is a protein that in humans is encoded by the SFRS11 gene.

<span class="mw-page-title-main">GTF2A1</span> Protein-coding gene in the species Homo sapiens

Transcription initiation factor IIA subunit 1 is a protein that in humans is encoded by the GTF2A1 gene.

<span class="mw-page-title-main">Serine/arginine-rich splicing factor 1</span> Protein-coding gene in the species Homo sapiens

Serine/arginine-rich splicing factor 1 (SRSF1) also known as alternative splicing factor 1 (ASF1), pre-mRNA-splicing factor SF2 (SF2) or ASF1/SF2 is a protein that in humans is encoded by the SRSF1 gene. ASF/SF2 is an essential sequence specific splicing factor involved in pre-mRNA splicing. SRSF1 is the gene that codes for ASF/SF2 and is found on chromosome 17. The resulting splicing factor is a protein of approximately 33 kDa. ASF/SF2 is necessary for all splicing reactions to occur, and influences splice site selection in a concentration-dependent manner, resulting in alternative splicing. In addition to being involved in the splicing process, ASF/SF2 also mediates post-splicing activities, such as mRNA nuclear export and translation.

Protein arginine methyltransferase 7 is a protein that in humans is encoded by the PRMT7 gene. Arginine methylation is an apparently irreversible protein modification catalyzed by arginine methyltransferases, such as PMT7, using S-adenosylmethionine (AdoMet) as the methyl donor. Arginine methylation is implicated in signal transduction, RNA transport, and RNA splicing.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000115875 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000024097 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: SFRS7 splicing factor, arginine/serine-rich 7, 35kDa".
  6. Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. S2CID   85911512.
  7. 1 2 "International Mouse Phenotyping Consortium".
  8. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC   3572410 . PMID   21677750.
  9. Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID   21677718.
  10. Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi: 10.1016/j.cell.2006.12.018 . PMID   17218247. S2CID   18872015.
  11. White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (Jul 2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell. 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMC   3717207 . PMID   23870131.
  12. 1 2 "Infection and Immunity Immunophenotyping (3i) Consortium".

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.