SMIM20

Last updated

SMIM20
Identifiers
Aliases SMIM20 , C4orf52, small integral membrane protein 20, MITRAC7, PNX
External IDs OMIM: 617465; MGI: 1913528; HomoloGene: 82612; GeneCards: SMIM20; OMA:SMIM20 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001145432
NM_001394130

NM_001145433

RefSeq (protein)

NP_001138904

NP_001138905

Location (UCSC) Chr 4: 25.86 – 25.93 Mb Chr 5: 53.42 – 53.44 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Small integral membrane protein 20 (SMIM20) is a protein that in humans is encoded by the SMIM20 gene. [5] SMIM20 acts as a prohormone to the peptide hormone phoenixin (PNX) which was discovered for the first time in 2013 in rodent sensory ganglia. [6] Two alternate cleavage sites within SMIM20 results in two different phoenixin products, Phoenixin-14 (PNX-14) and Phoenixin-20 (PNX-20). [7]

Contents

In the study of the evolution of nervous systems, SMIM20 together with NUCB2 have been found to have deep homology across all lineages that preceded creatures with central nervous systems, bilaterians, cnidarians, ctenophores, and sponges as well as in choanoflagellates. [8] [9]

Receptor signaling

Recent studies have found that GPR173, a previously orphaned GPCR, may act as a receptor for PNX-14 and PNX-20. [10] [11] [12]

See also

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000250317 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000061461 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: Small integral membrane protein 20" . Retrieved 2014-02-05.
  6. Yosten GL, Lyu RM, Hsueh AJ, Avsian-Kretchmer O, Chang JK, Tullock CW, et al. (February 2013). "A novel reproductive peptide, phoenixin". Journal of Neuroendocrinology. 25 (2): 206–215. doi:10.1111/j.1365-2826.2012.02381.x. PMC   3556183 . PMID   22963497.
  7. Mcilwraith EK, Belsham DD (May 2018). "Phoenixin: uncovering its receptor, signaling and functions". Acta Pharmacologica Sinica. 39 (5): 774–778. doi:10.1038/aps.2018.13. ISSN   1745-7254. PMC   5943909 . PMID   29671415.
  8. Yañez-Guerra LA, Thiel D, Jékely G (April 2022). O'Connell M (ed.). "Premetazoan Origin of Neuropeptide Signaling". Molecular Biology and Evolution. 39 (4): msac051. doi:10.1093/molbev/msac051. PMC   9004410 . PMID   35277960.
  9. Callier V (3 June 2022). "Brain-Signal Proteins Evolved Before Animals Did". Quanta Magazine. Retrieved 2022-06-03.
  10. Mcilwraith EK, Belsham DD (May 2018). "Phoenixin: uncovering its receptor, signaling and functions". Acta Pharmacologica Sinica. 39 (5): 774–778. doi:10.1038/aps.2018.13. ISSN   1745-7254. PMC   5943909 . PMID   29671415.
  11. Treen AK, Luo V, Belsham DD (2016-08-01). "Phoenixin Activates Immortalized GnRH and Kisspeptin Neurons Through the Novel Receptor GPR173". Molecular Endocrinology. 30 (8). Baltimore, Md.: 872–888. doi:10.1210/me.2016-1039. ISSN   0888-8809. PMC   5414621 . PMID   27268078.
  12. Stein LM, Tullock CW, Mathews SK, Garcia-Galiano D, Elias CF, Samson WK, et al. (September 2016). "Hypothalamic action of phoenixin to control reproductive hormone secretion in females: importance of the orphan G protein-coupled receptor Gpr173". American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 311 (3): R489 –R496. doi:10.1152/ajpregu.00191.2016. ISSN   0363-6119. PMC   5142227 . PMID   27440717.

Further reading