SN 1998bw

Last updated
SN 1998bw
SN 1998bw.jpg
Type Ic
Date26 April 1998
Constellation Telescopium
Right ascension 19h 35m 03.30s
Declination 52° 50 45.9
Galactic coordinates 344.99°, −27.72°
Redshift 0.0085  OOjs UI icon edit-ltr-progressive.svg
Host ESO 184-G82
Other designationsSN 1998bw, AAVSO 1927-53, GRB 980425

SN 1998bw was a rare broad-lined Type Ic [1] gamma ray burst supernova detected on 26 April 1998 in the ESO 184-G82 spiral galaxy, which some astronomers believe may be an example of a collapsar (hypernova). [2] The hypernova has been linked to GRB 980425, which was detected on 25 April 1998, the first time a gamma-ray burst has been linked to a supernova. [3] The hypernova is approximately 140 million light years away, very close for a gamma ray burst source. [4]

The region of the galaxy where the supernova occurred hosts stars 5-8 million years old and is relatively free from dust. A nearby region hosts multiple Wolf-Rayet stars less than 3 million years old, but it is unlikely that the supernova progenitor could be a runaway from that region. The implication is that the progenitor was a star originally 25-40 M if it exploded as a single star at the end of its life. [5]

Related Research Articles

<span class="mw-page-title-main">Supernova</span> Explosion of a star at its end of life

A supernova is a powerful and luminous explosion of a star. A supernova occurs during the last evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion. The original object, called the progenitor, either collapses to a neutron star or black hole, or is completely destroyed to form a diffuse nebula. The peak optical luminosity of a supernova can be comparable to that of an entire galaxy before fading over several weeks or months.

<span class="mw-page-title-main">SN 1987A</span> 1987 supernova event in the constellation Dorado

SN 1987A was a type II supernova in the Large Magellanic Cloud, a dwarf satellite galaxy of the Milky Way. It occurred approximately 51.4 kiloparsecs from Earth and was the closest observed supernova since Kepler's Supernova in 1604. Light and neutrinos from the explosion reached Earth on February 23, 1987 and was designated "SN 1987A" as the first supernova discovered that year. Its brightness peaked in May of that year, with an apparent magnitude of about 3.

<span class="mw-page-title-main">Gamma-ray burst</span> Flashes of gamma rays from distant galaxies

In gamma-ray astronomy, gamma-ray bursts (GRBs) are immensely energetic explosions that have been observed in distant galaxies, described by NASA as "the most powerful class of explosions in the universe". They are the most energetic and luminous electromagnetic events since the Big Bang. Bursts can last from ten milliseconds to several hours. After an initial flash of gamma rays, a longer-lived "afterglow" is usually emitted at longer wavelengths.

<span class="mw-page-title-main">Superluminous supernova</span> Supernova at least ten times more luminous than a standard supernova

A super-luminous supernova is a type of stellar explosion with a luminosity 10 or more times higher than that of standard supernovae. Like supernovae, SLSNe seem to be produced by several mechanisms, which is readily revealed by their light-curves and spectra. There are multiple models for what conditions may produce an SLSN, including core collapse in particularly massive stars, millisecond magnetars, interaction with circumstellar material, or pair-instability supernovae.

<span class="mw-page-title-main">Messier 74</span> Face-on spiral galaxy in the constellation Pisces

Messier 74 is a large spiral galaxy in the equatorial constellation Pisces. It is about 32 million light-years away from Earth. The galaxy contains two clearly defined spiral arms and is therefore used as an archetypal example of a grand design spiral galaxy. The galaxy's low surface brightness makes it the most difficult Messier object for amateur astronomers to observe. Its relatively large angular size and the galaxy's face-on orientation make it an ideal object for professional astronomers who want to study spiral arm structure and spiral density waves. It is estimated that M74 hosts about 100 billion stars.

<span class="mw-page-title-main">NGC 6946</span> Galaxy in the constellations Cepheus & Cygnus

NGC 6946, sometimes referred to as the Fireworks Galaxy, is a face-on intermediate spiral galaxy with a small bright nucleus, whose location in the sky straddles the boundary between the northern constellations of Cepheus and Cygnus. Its distance from Earth is about 25.2 million light-years or 7.72 megaparsecs, similar to the distance of M101 in the constellation Ursa Major. Both were once considered to be part of the Local Group, but are now known to be among the dozen bright spiral galaxies near the Milky Way but beyond the confines of the Local Group. NGC 6946 lies within the Virgo Supercluster.

<span class="mw-page-title-main">SN 1006</span> Supernova observed from Earth in the year 1006 CE

SN 1006 was a supernova that is likely the brightest observed stellar event in recorded history, reaching an estimated −7.5 visual magnitude, and exceeding roughly sixteen times the brightness of Venus. Appearing between April 30 and May 1, 1006, in the constellation of Lupus, this "guest star" was described by observers across China, Japan, modern-day Iraq, Egypt, and Europe, and was possibly recorded in North American petroglyphs. Some reports state it was clearly visible in the daytime. Modern astronomers now consider its distance from Earth to be about 7,200 light-years or 2,200 parsecs.

<span class="mw-page-title-main">GRB 970228</span> Gamma-ray burst detected on 28 Feb 1997, the first for which an afterglow was observed

GRB 970228 was the first gamma-ray burst (GRB) for which an afterglow was observed. It was detected on 28 February 1997 at 02:58 UTC. Since 1993, physicists had predicted GRBs to be followed by a lower-energy afterglow, but until this event, GRBs had only been observed in highly luminous bursts of high-energy gamma rays ; this resulted in large positional uncertainties which left their nature very unclear.

<span class="mw-page-title-main">W49B</span> Supernova remnant nebula in the constellation Aquila

W49B is a nebula in Westerhout 49 (W49). The nebula is a supernova remnant, probably from a type Ib or Ic supernova that occurred around 1,000 years ago. It may have produced a gamma-ray burst and is thought to have left a black hole remnant.

<span class="mw-page-title-main">Type Ia supernova</span> Type of supernova in binary systems

A Type Ia supernova is a type of supernova that occurs in binary systems in which one of the stars is a white dwarf. The other star can be anything from a giant star to an even smaller white dwarf.

<span class="mw-page-title-main">IC 443</span> Supernova remnant in the constellation Gemini

IC 443 is a galactic supernova remnant (SNR) in the constellation Gemini. On the plane of the sky, it is located near the star Eta Geminorum. Its distance is roughly 5,000 light years from Earth.

<span class="mw-page-title-main">Type Ib and Ic supernovae</span> Types of supernovae caused by a star collapsing

Type Ib and Type Ic supernovae are categories of supernovae that are caused by the stellar core collapse of massive stars. These stars have shed or been stripped of their outer envelope of hydrogen, and, when compared to the spectrum of Type Ia supernovae, they lack the absorption line of silicon. Compared to Type Ib, Type Ic supernovae are hypothesized to have lost more of their initial envelope, including most of their helium. The two types are usually referred to as stripped core-collapse supernovae.

<span class="mw-page-title-main">Pair-instability supernova</span> Type of high-energy supernova in very large stars

A pair-instability supernova is a type of supernova predicted to occur when pair production, the production of free electrons and positrons in the collision between atomic nuclei and energetic gamma rays, temporarily reduces the internal radiation pressure supporting a supermassive star's core against gravitational collapse. This pressure drop leads to a partial collapse, which in turn causes greatly accelerated burning in a runaway thermonuclear explosion, resulting in the star being blown completely apart without leaving a stellar remnant behind.

<span class="mw-page-title-main">Gamma-ray burst progenitors</span> Types of celestial objects that can emit gamma-ray bursts

Gamma-ray burst progenitors are the types of celestial objects that can emit gamma-ray bursts (GRBs). GRBs show an extraordinary degree of diversity. They can last anywhere from a fraction of a second to many minutes. Bursts could have a single profile or oscillate wildly up and down in intensity, and their spectra are highly variable unlike other objects in space. The near complete lack of observational constraint led to a profusion of theories, including evaporating black holes, magnetic flares on white dwarfs, accretion of matter onto neutron stars, antimatter accretion, supernovae, hypernovae, and rapid extraction of rotational energy from supermassive black holes, among others.

SN 2007uy was a supernova that occurred in the spiral galaxy NGC 2770. It was discovered by Yoji Hirose on December 31, 2007 from Chigasaki city in Japan, approximately four days after the explosion. The position of the supernova was offset 20.6″ east and 15.5″ south of the galaxy's nucleus, near a star-forming region. It was identified as a Type Ib supernova from its spectrum a week before reaching maximum, and appeared the most similar to SN 2004gq.

<span class="mw-page-title-main">NGC 7424</span> Galaxy in the constellation Grus

NGC 7424 is a barred spiral galaxy located 37.5 million light-years away in the southern constellation Grus. Its size makes it similar to our own galaxy, the Milky Way. It is called a "grand design" galaxy because of its well defined spiral arms. Two supernovae and two ultraluminous X-ray sources have been discovered in NGC 7424.

<span class="mw-page-title-main">SN 1994I</span> Supernova event from 1994 in constellation Canes Venatici

SN 1994I is a Type Ic supernova discovered on April 2, 1994 in the Whirlpool Galaxy by amateur astronomers Tim Puckett and Jerry Armstrong of the Atlanta Astronomy Club. Type Ic supernova are a rare type of supernova that result from the explosion of a very massive star that has shed its outer layers of hydrogen and helium. The explosion results in a highly luminous burst of radiation that then dims over the course of weeks or months. SN 1994I was a relatively nearby supernova, and provided an important addition to the then small collection of known Type Ic supernova. Very early images were captured of SN 1994I, as two high school students in Oil City, Pennsylvania serendipitously took images of the Whirlpool Galaxy using the 30-inch telescope at Leuschner Observatory on March 31, 1994, which included SN 1994I just after it began to brighten.

<span class="mw-page-title-main">SN 2014J</span> Supernova in Messier 82

SN 2014J was a type-Ia supernova in Messier 82 discovered in mid-January 2014. It was the closest type-Ia supernova discovered for 42 years, and no subsequent supernova has been closer as of 2023. The supernova was discovered by chance during an undergraduate teaching session at the University of London Observatory. It peaked on 31 January 2014, reaching an apparent magnitude of 10.5. SN 2014J was the subject of an intense observing campaign by professional astronomers and was bright enough to be seen by amateur astronomers.

<span class="mw-page-title-main">Hypernova</span> Supernova that ejects a large mass at unusually high velocity

A hypernova is a very energetic supernova which is believed to result from an extreme core-collapse scenario. In this case, a massive star collapses to form a rotating black hole emitting twin astrophysical jets and surrounded by an accretion disk. It is a type of stellar explosion that ejects material with an unusually high kinetic energy, an order of magnitude higher than most supernovae, with a luminosity at least 10 times greater. Hypernovae release so much of gamma rays they usually appear similar to a type Ic supernova, but with unusually broad spectral lines indicating an extremely high expansion velocity. Hypernovae are one of the mechanisms for producing long gamma ray bursts (GRBs), which range from 2 seconds to over a minute in duration. They have also been referred to as superluminous supernovae, though that classification also includes other types of extremely luminous stellar explosions that have different origins.

Ken'ichi Nomoto is a Japanese astrophysicist and astronomer, known for his research on stellar evolution, supernovae, and the origin of heavy elements.

References

  1. Woosley, S. E.; Eastman, Ronald G.; Schmidt, Brian P. (1999). "Gamma-Ray Bursts and Type Ic Supernova SN 1998bw" (PDF). The Astrophysical Journal. 516 (2): 788–796. arXiv: astro-ph/9806299 . Bibcode:1999ApJ...516..788W. doi:10.1086/307131. hdl:1885/94504. S2CID   17690696. Archived from the original (PDF) on 2016-09-18. Retrieved 2014-12-03.
  2. "Gamma-ray Burst 980425" . Retrieved June 11, 2017.
  3. Vreeswijk, P.; Tanvir, N.; Galama, T. (2000). "Gamma-Ray Burst Afterglows: Surprises from the Sky". The ING Newsletter. 2: 5. Bibcode:2000INGN....2....5V . Retrieved 2014-08-27.
  4. "A Strange Supernova with a Gamma-Ray Burst". European Southern Observatory. Retrieved 2015-11-14.
  5. Krühler, Thomas; Kuncarayakti, Hanindyo; Schady, Patricia; Anderson, Joseph P.; Galbany, Lluís; Gensior, Jindra (2017). "Hot gas around SN 1998bw - Inferring the progenitor from its environment". Astronomy & Astrophysics. 602 (85): A85. arXiv: 1702.05430 . Bibcode:2017A&A...602A..85K. doi:10.1051/0004-6361/201630268. S2CID   54903796.