SQ-universal group

Last updated

In mathematics, in the realm of group theory, a countable group is said to be SQ-universal if every countable group can be embedded in one of its quotient groups. SQ-universality can be thought of as a measure of largeness or complexity of a group.

Contents

History

Many classic results of combinatorial group theory, going back to 1949, are now interpreted as saying that a particular group or class of groups is (are) SQ-universal. However the first explicit use of the term seems to be in an address given by Peter Neumann to The London Algebra Colloquium entitled "SQ-universal groups" on 23 May 1968.

Examples of SQ-universal groups

In 1949 Graham Higman, Bernhard Neumann and Hanna Neumann proved that every countable group can be embedded in a two-generator group. [1] Using the contemporary language of SQ-universality, this result says that F2, the free group (non-abelian) on two generators, is SQ-universal. This is the first known example of an SQ-universal group. Many more examples are now known:

In addition much stronger versions of the Higmann-Neumann-Neumann theorem are now known. Ould Houcine has proved:

For every countable group G there exists a 2-generator SQ-universal group H such that G can be embedded in every non-trivial quotient of H. [9]

Some elementary properties of SQ-universal groups

A free group on countably many generators h1, h2, ..., hn, ... , say, must be embeddable in a quotient of an SQ-universal group G. If are chosen such that for all n, then they must freely generate a free subgroup of G. Hence:

Every SQ-universal group has as a subgroup, a free group on countably many generators.

Since every countable group can be embedded in a countable simple group, it is often sufficient to consider embeddings of simple groups. This observation allows us to easily prove some elementary results about SQ-universal groups, for instance:

If G is an SQ-universal group and N is a normal subgroup of G (i.e. ) then either N is SQ-universal or the quotient group G/N is SQ-universal.

To prove this suppose N is not SQ-universal, then there is a countable group K that cannot be embedded into a quotient group of N. Let H be any countable group, then the direct product H × K is also countable and hence can be embedded in a countable simple group S. Now, by hypothesis, G is SQ-universal so S can be embedded in a quotient group, G/M, say, of G. The second isomorphism theorem tells us:

Now and S is a simple subgroup of G/M so either:

or:

.

The latter cannot be true because it implies KH × KSN/(MN) contrary to our choice of K. It follows that S can be embedded in (G/M)/(MN/M), which by the third isomorphism theorem is isomorphic to G/MN, which is in turn isomorphic to (G/N)/(MN/N). Thus S has been embedded into a quotient group of G/N, and since HS was an arbitrary countable group, it follows that G/N is SQ-universal.

Since every subgroup H of finite index in a group G contains a normal subgroup N also of finite index in G, [10] it easily follows that:

If a group G is SQ-universal then so is any finite index subgroup H of G. The converse of this statement is also true. [11]

Variants and generalizations of SQ-universality

Several variants of SQ-universality occur in the literature. The reader should be warned that terminology in this area is not yet completely stable and should read this section with this caveat in mind.

Let be a class of groups. (For the purposes of this section, groups are defined up to isomorphism ) A group G is called SQ-universal in the class if and every countable group in is isomorphic to a subgroup of a quotient of G. The following result can be proved:

Let n, mZ where m is odd, and m > 1, and let B(m, n) be the free m-generator Burnside group, then every non-cyclic subgroup of B(m, n) is SQ-universal in the class of groups of exponent n.

Let be a class of groups. A group G is called SQ-universal for the class if every group in is isomorphic to a subgroup of a quotient of G. Note that there is no requirement that nor that any groups be countable.

The standard definition of SQ-universality is equivalent to SQ-universality both in and for the class of countable groups.

Given a countable group G, call an SQ-universal group HG-stable, if every non-trivial factor group of H contains a copy of G. Let be the class of finitely presented SQ-universal groups that are G-stable for some G then Houcine's version of the HNN theorem that can be re-stated as:

The free group on two generators is SQ-universal for.

However, there are uncountably many finitely generated groups, and a countable group can only have countably many finitely generated subgroups. It is easy to see from this that:

No group can be SQ-universal in.

An infinite class of groups is wrappable if given any groups there exists a simple group S and a group such that F and G can be embedded in S and S can be embedded in H. The it is easy to prove:

If is a wrappable class of groups, G is an SQ-universal for and then either N is SQ-universal for or G/N is SQ-universal for .
If is a wrappable class of groups and H is of finite index in G then G is SQ-universal for the class if and only if H is SQ-universal for .

The motivation for the definition of wrappable class comes from results such as the Boone-Higman theorem, which states that a countable group G has soluble word problem if and only if it can be embedded in a simple group S that can be embedded in a finitely presented group F. Houcine has shown that the group F can be constructed so that it too has soluble word problem. This together with the fact that taking the direct product of two groups preserves solubility of the word problem shows that:

The class of all finitely presented groups with soluble word problem is wrappable.

Other examples of wrappable classes of groups are:

The fact that a class is wrappable does not imply that any groups are SQ-universal for . It is clear, for instance, that some sort of cardinality restriction for the members of is required.

If we replace the phrase "isomorphic to a subgroup of a quotient of" with "isomorphic to a subgroup of" in the definition of "SQ-universal", we obtain the stronger concept of S-universal (respectively S-universal for/in ). The Higman Embedding Theorem can be used to prove that there is a finitely presented group that contains a copy of every finitely presented group. If is the class of all finitely presented groups with soluble word problem, then it is known that there is no uniform algorithm to solve the word problem for groups in . It follows, although the proof is not a straightforward as one might expect, that no group in can contain a copy of every group in . But it is clear that any SQ-universal group is a fortiori SQ-universal for . If we let be the class of finitely presented groups, and F2 be the free group on two generators, we can sum this up as:

The following questions are open (the second implies the first):

While it is quite difficult to prove that F2 is SQ-universal, the fact that it is SQ-universal for the class of finite groups follows easily from these two facts:

SQ-universality in other categories

If is a category and is a class of objects of , then the definition of SQ-universal for clearly makes sense. If is a concrete category, then the definition of SQ-universal in also makes sense. As in the group theoretic case, we use the term SQ-universal for an object that is SQ-universal both for and in the class of countable objects of .

Many embedding theorems can be restated in terms of SQ-universality. Shirshov's Theorem that a Lie algebra of finite or countable dimension can be embedded into a 2-generator Lie algebra is equivalent to the statement that the 2-generator free Lie algebra is SQ-universal (in the category of Lie algebras). This can be proved by proving a version of the Higman, Neumann, Neumann theorem for Lie algebras. [12] However versions of the HNN theorem can be proved for categories where there is no clear idea of a free object. For instance it can be proved that every separable topological group is isomorphic to a topological subgroup of a group having two topological generators (that is, having a dense 2-generator subgroup). [13]

A similar concept holds for free lattices. The free lattice in three generators is countably infinite. It has, as a sublattice, the free lattice in four generators, and, by induction, as a sublattice, the free lattice in a countable number of generators. [14]

Related Research Articles

<span class="mw-page-title-main">Abelian group</span> Commutative group (mathematics)

In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after Niels Henrik Abel.

In mathematical logic, model theory is the study of the relationship between formal theories, and their models. The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory.

In mathematics, especially in the area of abstract algebra known as combinatorial group theory, the word problem for a finitely generated group is the algorithmic problem of deciding whether two words in the generators represent the same element of . The word problem is a well-known example of an undecidable problem.

<span class="mw-page-title-main">Topological group</span> Group that is a topological space with continuous group action

In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.

In mathematics, specifically abstract algebra, the isomorphism theorems are theorems that describe the relationship among quotients, homomorphisms, and subobjects. Versions of the theorems exist for groups, rings, vector spaces, modules, Lie algebras, and other algebraic structures. In universal algebra, the isomorphism theorems can be generalized to the context of algebras and congruences.

<span class="mw-page-title-main">Simple group</span> Group without normal subgroups other than the trivial group and itself

In mathematics, a simple group is a nontrivial group whose only normal subgroups are the trivial group and the group itself. A group that is not simple can be broken into two smaller groups, namely a nontrivial normal subgroup and the corresponding quotient group. This process can be repeated, and for finite groups one eventually arrives at uniquely determined simple groups, by the Jordan–Hölder theorem.

<span class="mw-page-title-main">Cyclic group</span> Mathematical group that can be generated as the set of powers of a single element

In abstract algebra, a cyclic group or monogenous group is a group, denoted Cn, that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation to g or its inverse. Each element can be written as an integer power of g in multiplicative notation, or as an integer multiple of g in additive notation. This element g is called a generator of the group.

<span class="mw-page-title-main">Free group</span> Mathematics concept

In mathematics, the free groupFS over a given set S consists of all words that can be built from members of S, considering two words to be different unless their equality follows from the group axioms. The members of S are called generators of FS, and the number of generators is the rank of the free group. An arbitrary group G is called free if it is isomorphic to FS for some subset S of G, that is, if there is a subset S of G such that every element of G can be written in exactly one way as a product of finitely many elements of S and their inverses.

In mathematics, a presentation is one method of specifying a group. A presentation of a group G comprises a set S of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set R of relations among those generators. We then say G has presentation

<span class="mw-page-title-main">Generating set of a group</span> Abstract algebra concept

In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group can be expressed as a combination of finitely many elements of the subset and their inverses.

In mathematics, a free abelian group is an abelian group with a basis. Being an abelian group means that it is a set with an addition operation that is associative, commutative, and invertible. A basis, also called an integral basis, is a subset such that every element of the group can be uniquely expressed as an integer combination of finitely many basis elements. For instance the two-dimensional integer lattice forms a free abelian group, with coordinatewise addition as its operation, and with the two points (1,0) and (0,1) as its basis. Free abelian groups have properties which make them similar to vector spaces, and may equivalently be called free-modules, the free modules over the integers. Lattice theory studies free abelian subgroups of real vector spaces. In algebraic topology, free abelian groups are used to define chain groups, and in algebraic geometry they are used to define divisors.

In mathematics, a von Neumann algebra or W*-algebra is a *-algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. It is a special type of C*-algebra.

<span class="mw-page-title-main">Free product</span> Operation that combines groups

In mathematics, specifically group theory, the free product is an operation that takes two groups G and H and constructs a new group GH. The result contains both G and H as subgroups, is generated by the elements of these subgroups, and is the “universal” group having these properties, in the sense that any two homomorphisms from G and H into a group K factor uniquely through a homomorphism from GH to K. Unless one of the groups G and H is trivial, the free product is always infinite. The construction of a free product is similar in spirit to the construction of a free group.

In mathematics, an amenable group is a locally compact topological group G carrying a kind of averaging operation on bounded functions that is invariant under translation by group elements. The original definition, in terms of a finitely additive measure on subsets of G, was introduced by John von Neumann in 1929 under the German name "messbar" in response to the Banach–Tarski paradox. In 1949 Mahlon M. Day introduced the English translation "amenable", apparently as a pun on "mean".

In geometric topology, a field within mathematics, the obstruction to a homotopy equivalence of finite CW-complexes being a simple homotopy equivalence is its Whitehead torsion which is an element in the Whitehead group. These concepts are named after the mathematician J. H. C. Whitehead.

<span class="mw-page-title-main">Finitely generated group</span>

In algebra, a finitely generated group is a group G that has some finite generating set S so that every element of G can be written as the combination of finitely many elements of S and of inverses of such elements.

In mathematics, the Grothendieck group, or group of differences, of a commutative monoid M is a certain abelian group. This abelian group is constructed from M in the most universal way, in the sense that any abelian group containing a homomorphic image of M will also contain a homomorphic image of the Grothendieck group of M. The Grothendieck group construction takes its name from a specific case in category theory, introduced by Alexander Grothendieck in his proof of the Grothendieck–Riemann–Roch theorem, which resulted in the development of K-theory. This specific case is the monoid of isomorphism classes of objects of an abelian category, with the direct sum as its operation.

In mathematics, the HNN extension is an important construction of combinatorial group theory.

In mathematics, the height of an element g of an abelian group A is an invariant that captures its divisibility properties: it is the largest natural number N such that the equation Nx = g has a solution xA, or the symbol ∞ if there is no such N. The p-height considers only divisibility properties by the powers of a fixed prime number p. The notion of height admits a refinement so that the p-height becomes an ordinal number. Height plays an important role in Prüfer theorems and also in Ulm's theorem, which describes the classification of certain infinite abelian groups in terms of their Ulm factors or Ulm invariants.

In mathematical logic, specifically in the discipline of model theory, the Fraïssé limit is a method used to construct (infinite) mathematical structures from their (finite) substructures. It is a special example of the more general concept of a direct limit in a category. The technique was developed in the 1950s by its namesake, French logician Roland Fraïssé.

References

  1. G. Higman, B.H. Neumann and H. Neumann, 'Embedding theorems for groups', J. London Math. Soc. 24 (1949), 247-254
  2. Anton A. Klyachko, 'The SQ-universality of one-relator relative presentation', Arxiv preprint math.GR/0603468, 2006
  3. G. Arzhantseva, A. Minasyan, D. Osin, 'The SQ-universality and residual properties of relatively hyperbolic groups', Journal of Algebra 315 (2007), No. 1, pp. 165-177
  4. Benjamin Fine, Marvin Tretkoff, 'On the SQ-Universality of HNN Groups', Proceedings of the American Mathematical Society, Vol. 73, No. 3 (Mar., 1979), pp. 283-290
  5. P.M. Neumann: The SQ-universality of some finitely presented groups. J. Austral. Math. Soc. 16, 1-6 (1973)
  6. K. I. Lossov, 'SQ-universality of free products with amalgamated finite subgroups', Siberian Mathematical Journal Volume 27, Number 6 / November, 1986
  7. Muhammad A. Albar, 'On a four-generator Coxeter Group', Internat. J. Math & Math. Sci Vol 24, No 12 (2000), 821-823
  8. C. F. Miller. Decision problems for groups -- survey and reflections. In Algorithms and Classification in Combinatorial Group Theory, pages 1--60. Springer, 1991.
  9. A.O. Houcine, 'Satisfaction of existential theories in finitely presented groups and some embedding theorems', Annals of Pure and Applied Logic, Volume 142, Issues 1-3, October 2006, Pages 351-365
  10. Lawson, Mark V. (1998) Inverse semigroups: the theory of partial symmetries, World Scientific. ISBN   981-02-3316-7, p. 52
  11. P.M. Neumann: The SQ-universality of some finitely presented groups. J. Austral. Math. Soc. 16, 1-6 (1973)
  12. A.I. Lichtman and M. Shirvani, 'HNN-extensions of Lie algebras', Proc. American Math. Soc. Vol 125, Number 12, December 1997, 3501-3508
  13. Sidney A. Morris and Vladimir Pestov, 'A topological generalization of the Higman-Neumann-Neumann Theorem', Research Report RP-97-222 (May 1997), School of Mathematical and Computing Sciences, Victoria University of Wellington. See also J. Group Theory 1, No.2, 181-187 (1998).
  14. L.A. Skornjakov, Elements of Lattice Theory (1977) Adam Hilger Ltd. (see pp.77-78)