Satellite truck

Last updated

A Satellite Truck is a mobile communications satellite ground station mounted on a truck chassis as a platform. Employed in remote television broadcasts, satellite trucks transmit video signals back to studios or production facilities for editing and broadcasting. Satellite trucks usually travel with a production truck, which contains video cameras, sound equipment and a crew. A satellite truck has a large satellite dish antenna which is pointed at a communication satellite, which then relays the signal back down to the studio. Satellite communication allows transmission from any location that the production truck can reach, provided a line of sight to the desired satellite is available.

Contents

Satellite trucks are increasingly being used for data (ISP) services. These remote ISP services are used for disaster recovery and internet connectivity in areas underserved by mobile providers.

KSTP satellite truck KSTP Satellite Truck (15784156646).jpg
KSTP satellite truck

Equipment

Typically, a satellite truck will have its own onboard power source such as an electrical generator or inverter to create the alternating current to power all the transmission systems, which makes it an independent mobile satellite transmission entity. Often, such trucks will also have various degrees of video production equipment and video editing gear. This equipment allows these trucks to also act as mobile electronic news gathering (ENG) facilities, or they can even be outfitted to do electronic field production (EFP), allowing them to create an entire television show with multiple switched professional video cameras, character generators (CG) for digital on-screen graphics, video tape recorders (VTR) and video servers.

Most satellite trucks have been typically built on a light or mid-duty truck chassis with 6 wheels; usually with 4 tires on the rear axle. All equipment is mounted into the truck in racks that are fabricated into the box. Satellite trucks are generally referred to as 'fixed load' vehicles, meaning that the amount of equipment on-board generally does not change and the weight of the truck (other than fuel) ordinarily does not fluctuate.

Regulations

Some larger satellite trucks weigh over 26,001 pounds (11,794 kg), and therefore require the driver to obtain a Commercial Driver's License (CDL). Satellite trucks over 10,000 pounds (4,536 kg) GVWR are required to stop at weigh stations, undergo annual DOT inspections, and the Truck driver (usually also operates the truck) needs to pass a physical examination mandated by the DOT, maintain an accurate Drivers Daily Logbook, and comply with Hours of Service rules for professional drivers.[ citation needed ] Satellite Trucks part of a commercial fleet, or weighing over 10,000 pounds are considered commercial vehicles by the United States Department of Transportation (DOT).

Uses

A typical use for a satellite truck is satellite news gathering (SNG), which today in digital form is called DSNG.

Some newer generation satellite trucks are also being used for crisis communications, along with command and control centers for law enforcement, homeland security, emergency managers, and public utility companies.

The fact that these trucks do not rely upon terrestrial (land-based signals received through a conventional aerial) communication systems makes them ideal for information distribution and bandwidth creation in the aftermath of severe tropical cyclones, floods, and earthquakes when these land-based systems are damaged or destroyed. In the wake of Hurricane Katrina, when the communication ability of news media outlets far exceeded that of many federal and state relief agencies, many governmental bodies have since migrated to a mobile satellite-based communication platform.

C-Band satellite truck

C-Band Transportable uplinks ("Transportable Earth Station" (TES)) were initially used to transmit longer-format live television like sports television events and entertainment television programming. C-band satellite transmission requires a larger antenna than the Ku band trucks developed later in the 1980s, and a larger satellite antenna takes longer to set up and deploy.

Prior to dispatch of a C Band transportable uplink, an RF Interference study (RFI) needs to be completed. An RFI is a computer-generated report detailing any FCC protected microwave stations in the immediate area. This "frequency coordination" process has to be completed before an uplink transmission can commence. Terrestrial point-to-point signals share C-Band transmit frequencies (5.700-6.500 GHz), and full-time terrestrial signals take priority over ad hoc (temporary) C-Band uplink transmissions. Factors such as terrain, buildings and other structures are considered when determining the likelihood of interference from the TES.

Two satellite trucks in Helsinki, Finland BBC HD SNG.jpg
Two satellite trucks in Helsinki, Finland

Historically, it was necessary to install land telephone lines (also called hard or wired lines) where the TES was located. This was expensive and difficult to do at the time, since telephone companies were not used to setting up phone lines without notice of several days or even weeks. Early scrambling or encryption methods required a hard line for authorization of receive sites. Today, a digital cellular telephone is sufficient for most situations.

C-Band transportable service remains a prevalent source of long-haul transmission because of its immunity to the "rain fade" that Ku band experiences in significant rainstorms. C-Band transportable services cost more than similar Ku service due to the robust nature of the signal, the larger physical size of the truck, and specialized nature of C-Band transmissions.

With the advent of Ku band trucks (that don't require frequency coordination) and long-haul fiber-optics providing similar signal qualities, C-Band transportable service experienced a slowdown in service volume in the 1990s. It's still used in situations where rain-fades (a problem affecting only Ku band uplinks) are unacceptable and where fiber-optic links are not practical. C-Band uplinks are still commonly used for golf, auto racing, horse racing, and major college sports events in rural areas where local fiber interconnects to long-haul networks are either not available, or where the low number of events at the venue per year makes installation of fiber not cost effective. Ku TES' outnumber C-Band TES' around 30:1, when you consider the number of TV stations, network, and "freelance" Ku trucks versus the limited number of C-Band trucks.

Even with diminished usage, C-Band transportable services are still utilized as an alternative to fiber-optic cross-country transport as an 'alternate' transmission path. Most broadcast networks utilize both in order to protect their remote broadcasts that may be worth millions in rightsholder fees.

In the 2000's, high-definition television (HDTV) remote broadcasts caused a resurgence in C-Band transportable uplink services. The major factor in its resurgence was the limited amount of available bandwidth in local and long-haul fiber-optic service; uplink systems merely required the installation of High Definition MPEG digital encoders and decoders at either end.

Ku band satellite truck

Mobile Ku band satellite transmissions for television broadcasts started in Canada, until Conus Communications of St. Paul, MN along with Hubcom in Florida built the first Satellite News Gathering Truck (SNG) in 1983. Along with the truck, and used vans later purchased from Telesat in Canada, Conus developed a communications system which allowed satellite transmissions without the need to drop phone lines. Because of this, it was now possible to go 'live' from anywhere the truck could drive, changing the landscape of Electronic news-gathering.

The development of the mobile phone and its decreasing cost of operation and hardware over the years means trucks don't need a satellite "comms" system in most places. Satellite time was also easily booked on an 'as-needed' basis, typically around $500 per hour for the common Ku band TV transmission.

Over the years, Ku band Satellite trucks have undergone changes, from large trucks with C-Band dishes outfitted with landing pads and antenna wings to make them FCC compliant, to simpler, rapidly deployable Ku band type. Ku band uplink vehicles are available in a series of small to large vehicles, varying from an SUV, van, Sprinter, "bread truck (cutaway)", to the more common carryall (2 axle/6 tire truck). Typical Ku uplink vehicles are as large as 13 feet by 6 inches tall by 40 feet long, being the largest (non-tractor-trailer type) commercial units allowed on the roads.

Satellite vehicles are either TV station or network-owned. They can be custom suited to their internal usage needs, or are rental units owned by independent companies. Independently owned satellite uplink vehicles are often designed to be versatile, performing multiple uplink functions ranging from straight uplink/downlink services, network news, satellite media tours, or even being configured to becoming a full production vehicle.

Such large uplink trucks now have multiple camera television production capabilities all on board, as pioneered by Satellite Digital Teleproductions (SDTV) in the early 1990s. This combination, being an uplink with production along with a Transportable Earth Station (TES), is now the preferred vehicle for smaller (i.e. one to eight cameras), on location, live television broadcast instead of a separate uplink vehicle working alongside a larger 50-foot tractor trailer production-only vehicle, although the latter is still a regular occurrence.

There are a few combination production/uplink combination vehicles where the uplink system is located on the semi-tractor and the production facilities are in the semi-trailer. These systems add the ability to physically separate the uplink from the production unit. Typical scenarios for this are when the production trailer has to park inside a building, or if the uplink antenna has to be positioned farther away from the production trailer in order to make line-of-sight to the satellite arc.

Larger satellite vehicles are often television production control rooms (PCR), mobile Newsrooms, and/or workspaces on wheels, operated and maintained by broadcast engineers known as satellite truck operators. Operators of these units are known to have a vagabond lifestyle, spending large parts of their lives on the road.

Currently, even a simple flyaway transportable unit can be packed all into two suitcases, all small enough to be airline compliant.[ citation needed ] Smaller suitcase flyaway units are often used to supplement a build on location television control room, or to provide satellite uplink facilities in locations where a truck cannot be easily transported.

Satellite truck operation and maintenance

Full-time satellite truck operators can earn from USD $35,000 to over $100,000 per year depending on the number of hours worked, years of experience in the field, and the area in the US typically served (positions in major metropolitan areas often compensate more). There are some companies that keep databases of part-time or freelance satellite truck operators.

The National Association of Broadcasters (NAB) occasionally offer courses on the operation of satellite trucks, however most operators have learned their trade from an industry mentor or a combination of both formal in school and on the job informal training.

While helpful, formal training in electronics is not required to be a satellite truck operator. Even camera operators have made the transition from photography to transmission, a clear understanding of the operation of each device on the truck and at what point in the transmission flow it is used are required. Most modern day electronic equipment is too complicated to repair, especially in the field. Truck operators, however, are expected to be able to quickly identify a defective device and either replace it or engineer a way around it. It is for this reason a strong transmission flow understanding is essential.

Having a background in auto mechanics can also help, especially considering that many truck's main power source is a diesel generator. At the absolute least, an operator should know how to change oil, fuel, or an air filter and troubleshoot common engine problems (e.g. burning oil, fuel pump failure, starter/alternator issues).

Like other vehicles, trucks need regular maintenance and upkeep. Older trucks are more difficult to maintain because of increased vehicle wear, availability of parts (for discontinued nameplates), and availability of qualified service personnel fluent in maintenance issues of older vehicles. The expected lifespan for most truck chassis is roughly 8–10 years or 200,000 miles, dependent on its operating environment. It is common for satellite truck boxes to be swapped over to a newer chassis.

Driving the truck to and from event locations is a large, often overlooked, part of the job. Satellite truck operators are often not as interchangeable as reporters, producers, or camera crews, and as a result, can be worked full news cycles (e.g. morning to night). When this happens, the DOT Hours of Service rules may prohibit the operator to drive the truck. This often proves to be complicated for planning and logistic purposes.

By the very nature of the work, a truck operator is expected to travel, often at a moment's notice. Most uplink-for-hire operators keep a packed suitcase with at least 7 days of clothing in or near the truck for prompt deployment.

See also

Related Research Articles

<span class="mw-page-title-main">Cable television</span> Television content transmitted via signals on coaxial cable

Cable television is a system of delivering television programming to consumers via radio frequency (RF) signals transmitted through coaxial cables, or in more recent systems, light pulses through fibre-optic cables. This contrasts with broadcast television, in which the television signal is transmitted over-the-air by radio waves and received by a television antenna attached to the television; or satellite television, in which the television signal is transmitted over-the-air by radio waves from a communications satellite orbiting the Earth, and received by a satellite dish antenna on the roof. FM radio programming, high-speed Internet, telephone services, and similar non-television services may also be provided through these cables. Analog television was standard in the 20th century, but since the 2000s, cable systems have been upgraded to digital cable operation.

In a telecommunications network, a link is a communication channel that connects two or more devices for the purpose of data transmission. The link may be a dedicated physical link or a virtual circuit that uses one or more physical links or shares a physical link with other telecommunications links.

<span class="mw-page-title-main">Communications satellite</span> Artificial satellite that relays radio signals

A communications satellite is an artificial satellite that relays and amplifies radio telecommunication signals via a transponder; it creates a communication channel between a source transmitter and a receiver at different locations on Earth. Communications satellites are used for television, telephone, radio, internet, and military applications. Many communications satellites are in geostationary orbit 22,300 miles (35,900 km) above the equator, so that the satellite appears stationary at the same point in the sky; therefore the satellite dish antennas of ground stations can be aimed permanently at that spot and do not have to move to track the satellite. Others form satellite constellations in low Earth orbit, where antennas on the ground have to follow the position of the satellites and switch between satellites frequently.

The Ku band is the portion of the electromagnetic spectrum in the microwave range of frequencies from 12 to 18 gigahertz (GHz). The symbol is short for "K-under", because it is the lower part of the original NATO K band, which was split into three bands because of the presence of the atmospheric water vapor resonance peak at 22.24 GHz, (1.35 cm) which made the center unusable for long range transmission. In radar applications, it ranges from 12 to 18 GHz according to the formal definition of radar frequency band nomenclature in IEEE Standard 521–2002.

<span class="mw-page-title-main">Ultra high frequency</span> Electromagnetic spectrum 300–3000 MHz

Ultra high frequency (UHF) is the ITU designation for radio frequencies in the range between 300 megahertz (MHz) and 3 gigahertz (GHz), also known as the decimetre band as the wavelengths range from one meter to one tenth of a meter. Radio waves with frequencies above the UHF band fall into the super-high frequency (SHF) or microwave frequency range. Lower frequency signals fall into the VHF or lower bands. UHF radio waves propagate mainly by line of sight; they are blocked by hills and large buildings although the transmission through building walls is strong enough for indoor reception. They are used for television broadcasting, cell phones, satellite communication including GPS, personal radio services including Wi-Fi and Bluetooth, walkie-talkies, cordless phones, satellite phones, and numerous other applications.

A satellite dish is a dish-shaped type of parabolic antenna designed to receive or transmit information by radio waves to or from a communication satellite. The term most commonly means a dish which receives direct-broadcast satellite television from a direct broadcast satellite in geostationary orbit.

<span class="mw-page-title-main">Cable television headend</span> Facility for cable television system

A cable television headend is a master facility for receiving television signals for processing and distribution over a cable television system. A headend facility may be staffed or unstaffed and is typically surrounded by some type of security fencing. The building is typically sturdy and purpose-built to provide security, cooling, and easy access for the electronic equipment used to receive and re-transmit video over the local cable infrastructure. One can also find head ends in power-line communication (PLC) substations and Internet communications networks.

The S band is a designation by the Institute of Electrical and Electronics Engineers (IEEE) for a part of the microwave band of the electromagnetic spectrum covering frequencies from 2 to 4 gigahertz (GHz). Thus it crosses the conventional boundary between the UHF and SHF bands at 3.0 GHz. The S band is used by airport surveillance radar for air traffic control, weather radar, surface ship radar, and some communications satellites, especially those satellites used by NASA to communicate with the Space Shuttle and the International Space Station. The 10 cm radar short-band ranges roughly from 1.55 to 5.2 GHz. The S band also contains the 2.4–2.483 GHz ISM band, widely used for low power unlicensed microwave devices such as cordless phones, wireless headphones (Bluetooth), wireless networking (WiFi), garage door openers, keyless vehicle locks, baby monitors as well as for medical diathermy machines and microwave ovens. India's regional satellite navigation network (IRNSS) broadcasts on 2.483778 to 2.500278 GHz.

<span class="mw-page-title-main">Satellite Internet access</span> Satellite-provided Internet

Satellite Internet access or Satellite Broadband is Internet access provided through communication satellites. Modern consumer grade satellite Internet service is typically provided to individual users through geostationary satellites that can offer relatively high data speeds, with newer satellites using Ku band to achieve downstream data speeds up to 506 Mbit/s. In addition, new satellite internet constellations are being developed in low-earth orbit to enable low-latency internet access from space.

Free-to-air (FTA) services are television (TV) and radio services broadcast in unencrypted form, allowing any person with the appropriate receiving equipment to receive the signal and view or listen to the content without requiring a subscription, other ongoing cost, or one-off fee. In the traditional sense, this is carried on terrestrial radio signals and received with an antenna.

<span class="mw-page-title-main">Outside broadcasting</span> Remote production of television or radio programmes

Outside broadcasting (OB) is the electronic field production (EFP) of television or radio programmes from a mobile remote broadcast television studio. Professional video camera and microphone signals come into the production truck for processing, recording and possibly transmission.

A television station is a set of equipment managed by a business, organisation or other entity such as an amateur television (ATV) operator, that transmits video content and audio content via radio waves directly from a transmitter on the earth's surface to any number of tuned receivers simultaneously.

<span class="mw-page-title-main">Microwave transmission</span> Transmission of information via microwaves

Microwave transmission is the transmission of information by electromagnetic waves with wavelengths in the microwave frequency range of 300 MHz to 300 GHz of the electromagnetic spectrum. Microwave signals are normally limited to the line of sight, so long-distance transmission using these signals requires a series of repeaters forming a microwave relay network. It is possible to use microwave signals in over-the-horizon communications using tropospheric scatter, but such systems are expensive and generally used only in specialist roles.

<span class="mw-page-title-main">Satellite television</span> Broadcasting of television using artificial satellites

Satellite television is a service that delivers television programming to viewers by relaying it from a communications satellite orbiting the Earth directly to the viewer's location. The signals are received via an outdoor parabolic antenna commonly referred to as a satellite dish and a low-noise block downconverter.

<span class="mw-page-title-main">Technology of television</span> Telecommunications, sound and video

The technology of television has evolved since its early days using a mechanical system invented by Paul Gottlieb Nipkow in 1884. Every television system works on the scanning principle first implemented in the rotating disk scanner of Nipkow. This turns a two-dimensional image into a time series of signals that represent the brightness and color of each resolvable element of the picture. By repeating a two-dimensional image quickly enough, the impression of motion can be transmitted as well. For the receiving apparatus to reconstruct the image, synchronization information is included in the signal to allow proper placement of each line within the image and to identify when a complete image has been transmitted and a new image is to follow.

<span class="mw-page-title-main">Radio</span> Technology of using radio waves to carry information

Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by another antenna connected to a radio receiver. Radio is widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing, and other applications.

Radio over fiber (RoF) or RF over fiber (RFoF) refers to a technology whereby light is modulated by a radio frequency signal and transmitted over an optical fiber link. Main technical advantages of using fiber optical links are lower transmission losses and reduced sensitivity to noise and electromagnetic interference compared to all-electrical signal transmission.

A Satellite contribution link or service is a means to transport video programming by a satellite link from a remote source to a broadcaster's studio or from the studio to a satellite TV uplink centre.

<span class="mw-page-title-main">Production truck</span> Mobile audio and video control room

A television production truck or OB van is a small mobile production control room to allow filming of events and video production at locations outside a regular television studio. They are used for remote broadcasts, outside broadcasting (OB), and electronic field production (EFP). Some require a crew of as many as 30 people, with additional trucks for additional equipment as well as a satellite truck, which transmits video back to the studio by sending it up through a communications satellite using a satellite dish, which then transmits it back down to the studio. Alternatively, some production trucks include a satellite transmitter and satellite dish for this purpose in a single truck body to save space, time and cost.

<span class="mw-page-title-main">Es'hail 2</span>

Es'hail 2 is a Qatari satellite, launched aboard a SpaceX Falcon 9 rocket on November 15, 2018. Es'hail 2 was built by Japan's Mitsubishi Electric company, and operates at 26° East longitude along a geostationary orbit to provide direct-to-home television services in the Middle East and North Africa region. The satellite features 24 Ku-band and 11 Ka-band transponders to provide direct broadcasting services for television, government and commercial content distribution. In addition to commercial services, the payload of Es'hail 2 includes a linear transponder with a bandwidth of 500 kHz and 8 MHz for the amateur radio satellite service, with uplink on 2.4 GHz and downlink on 10.45 GHz.

References