Professional video camera

Last updated
Modern digital television camera with a DIGI SUPER 86II xs lens from Canon Sony television camera with DIGI SUPER 86II xs 20120211a.jpg
Modern digital television camera with a DIGI SUPER 86II xs lens from Canon

A professional video camera (often called a television camera even though its use has spread beyond television) is a high-end device for creating electronic moving images (as opposed to a movie camera, that earlier recorded the images on film). Originally developed for use in television studios or with outside broadcast trucks, they are now also used for music videos, direct-to-video movies (see digital movie camera), corporate and educational videos, wedding videos, among other uses. Since the 2000s, most professional video cameras are digital (instead of analog).

Contents

Sony HDC-1550 camera with Fujinon lens Sony HDC-1550 HDVS.JPG
Sony HDC-1550 camera with Fujinon lens

The distinction between professional video cameras and movie cameras narrowed as HD digital video cameras with sensors the same size as 35mm movie cameras - plus dynamic range (exposure latitude) and color rendition approaching film quality - were introduced in the late 2010s. Nowadays, HDTV cameras designed for broadcast television, news, sports, events and other works such as reality TV are termed as professional video cameras. A digital movie camera is designed for movies or scripted television to record files that are then color corrected during post-production. The video signal from a professional video camera can be broadcast live, or is meant to be edited quickly with little or no color or exposure adjustments needed.

History

The earliest video cameras were mechanical flying-spot scanners which were in use in the 1920s and 1930s during the period of mechanical television. Improvements in video camera tubes in the 1930s ushered in the era of electronic television. Earlier, cameras were very large devices, almost always in two sections. The camera section held the lens and camera tube pre-amplifiers and other necessary electronics, and was connected to a large diameter multicore cable to the remainder of the camera electronics, usually mounted in a separate room in the studio, or a remote truck. The camera head could not generate a video picture signal on its own. The video signal was output to the studio for switching and transmission. By the fifties, electronic miniaturization had progressed to the point where some monochrome cameras could operate standalone and even be handheld. But the studio configuration remained, with the large cable bundle transmitting the signals back to the camera control unit (CCU). The CCU in turn was used to align and operate the camera's functions, such as exposure, system timing, video and black levels.

This 1954 RCA TK-41C, shown here mounted on a dolly, weighed 310 lbs. RCA Color Broadcast Camera TK-41C - 2.jpg
This 1954 RCA TK-41C, shown here mounted on a dolly, weighed 310 lbs.

The first color cameras (1950s in the US, early 1960s in Europe), notably the RCA TK-40/41 series, were much more complex with their three (and in some models four) pickup tubes, and their size and weight drastically increased. Handheld color cameras did not come into general use until the early 1970s - the first generation of cameras were split into a camera head unit (the body of the camera, containing the lens and pickup tubes, and held on the shoulder or a body brace in front of the operator) connected via a cable bundle to a backpack CCU.

A 1973 Ikegami HL-33 ENG Ikegami Electronics HL-33 Television Camera.jpg
A 1973 Ikegami HL-33 ENG

The Ikegami HL-33, [1] the RCA TKP45 [2] and the Thomson Microcam [3] were portable two piece color cameras introduced in the early 1970s. For field work a separate VTR was still required to record the camera's video output. Typically this was either a portable 1" reel to reel VTR, or a portable 3/4" U-matic VCR. Typically, the two camera units would be carried by the camera operator, while a tape operator would carry the portable recorder. With the introduction of the RCA TK76 in 1976, camera operators were finally able to carry on their shoulders a one piece camera containing all the electronics to output a broadcast quality composite video signal. A separate videotape recording unit was still required.

Electronic news-gathering (ENG) cameras replaced the 16mm film cameras for TV news production from the 1970s onwards because the cost of shooting on film was significantly more than shooting on a reusable tape. Portable video tape production also enabled much faster turnaround time for the quick completion of news stories, compared to the need to chemically process film before it could be shown or edited. However some news feature stories for weekly news magazine shows continued to use 16mm film cameras until the 1990s.

At first all these cameras used tube-based sensors, but charge-coupled device (CCD) imagers came on the scene in the mid-80s, bringing numerous benefits. Early CCD cameras could not match the colour or resolution of their tube counterparts, but the benefits of CCD technology, such as introducing smaller and lightweight cameras, a better and more stable image (that was not prone to image burn in or lag) and no need for registration meant development on CCD imagers quickly took off and, once rivaling and offering a superior image to a tube sensor, began displacing tube-based cameras - the latter of which were all but disused by the early 1990s. Eventually, cameras with the recorder permanently mated to the camera head became the norm for ENG. In studio cameras, the camera electronics shrank, and CCD imagers replaced the pickup tubes. The thick multi-core cables connecting the camera head to the CCU were replaced in the late seventies with triax connections, a slender video cable that carried multiple video signals, intercom audio, and control circuits, and could be run for a mile or more. As the camera innards shrunk, the electronics no longer dictated the size of the enclosure, however the box shape remained, as it is necessary to hold the large studio lenses, teleprompters, electronic viewfinder (EVF), and other paraphernalia needed for studio and sports production. Electronic Field Production cameras were often mounted in studio configurations inside a mounting cage. This cage supported the additional studio accessories.

In the late 1990s, as HDTV broadcasting commenced, HDTV cameras suitable for news and general purpose work were introduced. Though they delivered much better image quality, their overall operation was identical to their standard definition predecessors. New methods of recording for cameras were introduced to supplant video tape, tapeless cameras. Ikegami and Avid introduced EditCam in 1996, based on interchangeable hard drives. Panasonic introduced P2 cameras. These recorded a DVCPro signal on interchangeable flash memory media. Several other data storage device recording systems were introduced, notably XDCAM from Sony. Sony also introduced SxS (S-by-S), a flash memory standard compliant to the Sony and Sandisk-created ExpressCard standard. Eventually flash storage largely supplanted other forms of recording media.

In 2000s, major manufacturers like Sony, Philips introduced the digital professional video cameras. These cameras used CCD sensors and recorded video digitally on flash storage. These were followed by digital HDTV cameras. As digital technology improved and also due to digital television transition, digital professional video cameras have become dominant in television studios, ENG, EFP and even in other areas since 2010s. CCD sensors were eventually replaced by CMOS sensors.

Chronology

Sony HDC-series camera on an outside broadcast TTV OB camera 7 20181117a.jpg
Sony HDC-series camera on an outside broadcast

Usage types

Most professional cameras utilize an optical prism block directly behind the lens. This prism block (a trichroic assembly comprising two dichroic prisms) separates the image into the three primary colors, red, green, and blue, directing each color into a separate charge-coupled device (CCD) or Active pixel sensor (CMOS image sensor) mounted to the face of each prism. Some high-end consumer cameras also do this, producing a higher-resolution image, with better color fidelity than is normally possible with just a single video pickup.

In both single sensor Bayer filter and triple sensor designs, the weak signal created by the sensors is amplified before being encoded into analog signals for use by the viewfinder and also encoded into digital signals for transmission and recording. The analog outputs were normally in the form of either a composite video signal, which combined the color and luminance information to a single output; or an R-Y B-Y Y component video output through three separate connectors.

Studio cameras

Studio camera, studio lens and teleprompter (from left to right) on a pedestal Camaras Sony 1 (cropped).JPG
Studio camera, studio lens and teleprompter (from left to right) on a pedestal

Most television studio cameras stand on the floor, usually with pneumatic or hydraulic mechanisms called pedestals to adjust the height and position in the studio. The cameras in a multiple-camera setup are controlled by a device known as a camera control unit (CCU), to which they are connected via a triax, fibre optic or the almost obsolete multicore cable. The CCU, along with genlock and other equipment, is installed in the central apparatus room (CAR) of the television studio. A remote control panel in the production control room (PCR) for each camera is then used by the vision engineer(s) to balance the pictures.

When used outside a formal television studio in outside broadcasting (OB), they are often on tripods that may or may not have wheels (depending on the model of the tripod). Initial models used analog technology, but are now obsolete, supplanted by digital models.

Studio cameras are light and small enough to be taken off the pedestal and the lens changed to a smaller size to be used handheld on a camera operator's shoulder, but they still have no recorder of their own and are cable-bound. Cameras can also be mounted on a tripod, a dolly or a crane, thus making the cameras much more versatile than previous generations of studio cameras. These cameras have a tally light, a small signal-lamp used that indicates, for the benefit of those being filmed as well as the camera operator, that the camera is 'live' – i.e. its signal is being used for the 'main program' at that moment.

ENG cameras

Sony camera head with Betacam SP dock recorder Betacam SP camera.jpg
Sony camera head with Betacam SP dock recorder

ENG (electronic news gathering) video cameras were originally designed for use by news camera operators. While they have some similarities to the smaller consumer camcorder, they differ in several regards:

EFP cameras

EFP camera operator at a baseball game SportsCameraman.jpg
EFP camera operator at a baseball game

Electronic field production cameras are similar to studio cameras in that they are used primarily in multiple camera switched configurations, but outside the studio environment, for concerts, sports and live news coverage of special events. These versatile cameras can be carried on the shoulder, or mounted on camera pedestals and cranes, with the large, very long focal length zoom lenses made for studio camera mounting. These cameras have no recording ability on their own, and transmit their signals back to the broadcast truck through a fiber optic, triax, radio frequency or the virtually obsolete multicore cable.

Others

A remote-controlled camera mounted on a miniature cable car for mobility Cable car TV camera crop.jpg
A remote-controlled camera mounted on a miniature cable car for mobility

Remote cameras are typically very small camera heads designed to be operated by remote control. Despite their small size, they are often capable of performance close to that of the larger ENG and EFP types.

Block cameras are so called because the camera head is a small block, often smaller than the lens itself. Some block cameras are completely self-contained, while others only contain the sensor block and its pre-amps, thus requiring connection to a separate camera control unit in order to operate. All the functions of the camera can be controlled from a distance, and often there is a facility for controlling the lens focus and zoom as well. These cameras are mounted on pan and tilt heads, and may be placed in a stationary position, such as atop a pole or tower, in a corner of a broadcast booth, or behind a basketball hoop. They can also be placed on robotic dollies, at the end of camera booms and cranes, or "flown" in a cable supported harness, as shown in the illustration.

Lipstick cameras are so called because the lens and sensor block combined are similar in size and appearance to a lipstick container. These are either hard mounted in a small location, such as a race car, or on the end of a boom pole. The sensor block and lens are separated from the rest of the camera electronics by a long thin multi conductor cable. The camera settings are manipulated from this box, while the lens settings are normally set when the camera is mounted in place.

See also

Related Research Articles

<span class="mw-page-title-main">Digital video</span> Digital electronic representation of moving visual images

Digital video is an electronic representation of moving visual images (video) in the form of encoded digital data. This is in contrast to analog video, which represents moving visual images in the form of analog signals. Digital video comprises a series of digital images displayed in rapid succession, usually at 24, 30, or 60 frames per second. Digital video has many advantages such as easy copying, multicasting, sharing and storage.

<span class="mw-page-title-main">Digital camera</span> Camera that captures photographs or video in digital format

A digital camera is a camera that captures photographs in digital memory. Most cameras produced today are digital, largely replacing those that capture images on photographic film. Digital cameras are now widely incorporated into mobile devices like smartphones with the same or more capabilities and features of dedicated cameras. High-end, high-definition dedicated cameras are still commonly used by professionals and those who desire to take higher-quality photographs.

<span class="mw-page-title-main">Camcorder</span> Video camera with built-in video recorder

A camcorder is a self-contained portable electronic device with video and recording as its primary function. It is typically equipped with an articulating screen mounted on the left side, a belt to facilitate holding on the right side, hot-swappable battery facing towards the user, hot-swappable recording media, and an internally contained quiet optical zoom lens.

<span class="mw-page-title-main">Video camera</span> Camera used for electronic motion picture acquisition

A video camera is an optical instrument that captures videos, as opposed to a movie camera, which records images on film. Video cameras were initially developed for the television industry but have since become widely used for a variety of other purposes.

<span class="mw-page-title-main">Video camera tube</span> Device used in television cameras

Video camera tubes were devices based on the cathode-ray tube that were used in television cameras to capture television images, prior to the introduction of charge-coupled device (CCD) image sensors in the 1980s. Several different types of tubes were in use from the early 1930s, and as late as the 1990s.

<span class="mw-page-title-main">Digital single-lens reflex camera</span> Digital cameras combining the parts of a single-lens reflex camera and a digital camera back

A digital single-lens reflex camera is a digital camera that combines the optics and the mechanisms of a single-lens reflex camera with a solid-state image sensor and digitally records the images from the sensor.

<span class="mw-page-title-main">RCA TK-40/41</span> First practical color television camera (1953-67)

The RCA TK-40 is considered to be the first practical color television camera, initially used for special broadcasts in late 1953, and with the follow-on TK-40A actually becoming the first to be produced in quantity in March 1954. The TK-40 was produced by RCA Broadcast to showcase the new compatible color system for NTSC—eventually named NTSC-M or simply M—which the company is credited with inventing. Color had been attempted many times before, often in a semi-mechanical fashion, but this was the first series of practical, fully electronic cameras to go into widespread production.

The Technology and Engineering Emmy Awards, or Technology and Engineering Emmys, are one of two sets of Emmy Awards that are presented for outstanding achievement in engineering development in the television industry. The Technology and Engineering Emmy Awards are presented by the National Academy of Television Arts and Sciences (NATAS), while the separate Primetime Engineering Emmy Awards are given by its sister organization the Academy of Television Arts & Sciences (ATAS).

<span class="mw-page-title-main">Flying-spot scanner</span>

A flying-spot scanner (FSS) uses a scanning source of a spot of light, such as a high-resolution, high-light-output, low-persistence cathode ray tube (CRT), to scan an image. Usually the image to be scanned is on photographic film, such as motion picture film, or a slide or photographic plate. The output of the scanner is usually a television signal.

<span class="mw-page-title-main">Image sensor</span> Device that converts images into electronic signals

An image sensor or imager is a sensor that detects and conveys information used to form an image. It does so by converting the variable attenuation of light waves into signals, small bursts of current that convey the information. The waves can be light or other electromagnetic radiation. Image sensors are used in electronic imaging devices of both analog and digital types, which include digital cameras, camera modules, camera phones, optical mouse devices, medical imaging equipment, night vision equipment such as thermal imaging devices, radar, sonar, and others. As technology changes, electronic and digital imaging tends to replace chemical and analog imaging.

<span class="mw-page-title-main">Apollo TV camera</span> Outerspace broadcasting device

The Apollo program used several television cameras in its space missions in the late 1960s and 1970s; some of these Apollo TV cameras were also used on the later Skylab and Apollo–Soyuz Test Project missions. These cameras varied in design, with image quality improving significantly with each successive model. Two companies made these various camera systems: RCA and Westinghouse. Originally, these slow-scan television (SSTV) cameras, running at 10 frames per second (fps), produced only black-and-white pictures and first flew on the Apollo 7 mission in October 1968. A color camera – using a field-sequential color system – flew on the Apollo 10 mission in May 1969, and every mission after that. The color camera ran at the North American standard 30 fps. The cameras all used image pickup tubes that were initially fragile, as one was irreparably damaged during the live broadcast of the Apollo 12 mission's first moonwalk. Starting with the Apollo 15 mission, a more robust, damage-resistant camera was used on the lunar surface. All of these cameras required signal processing back on Earth to make the frame rate and color encoding compatible with analog broadcast television standards.

<span class="mw-page-title-main">Cintel</span> British digital cinema company

Cintel was a British digital cinema company founded in 1927 by John Logie Baird and based in Ware, Hertfordshire. The early company was called Cinema Television Ltd. Cinema Television was sold to J Arthur Rank Organization renamed Rank Cintel in 1958. It specialized in the design and manufacture of professional post-production equipment, for transcribing film into video or data formats. It was formerly part of the Rank Organisation. Along with a line of telecines, Rank Cintel made 3 tube RGB color video projectors in the 1960s.

<span class="mw-page-title-main">Sony camcorders</span>

Sony Corporation produces professional, consumer, and prosumer camcorders such as studio and broadcast, digital cinema cameras, camcorders, pan-tilt-zoom and remote cameras.

Broadcast Television Systems (BTS) was a joint venture between Robert Bosch GmbH's Fernseh Division and Philips Broadcast in Breda, Netherlands, formed in 1986.

<span class="mw-page-title-main">EMI 2001</span>

The EMI 2001 broadcast studio camera was an early, very successful British made Plumbicon studio camera that included the lens within the body of the camera. Four 30 mm tubes allowed one tube to be dedicated solely to producing a relatively high resolution monochrome signal, with the other three tubes each providing red, green and blue signals. Even though semiconductors were used in most of the camera, the highly sensitive head amplifiers still used thermionic valves in the first generation of the design.

<span class="mw-page-title-main">Spirit DataCine</span> Motion picture film scanner

Spirit DataCine is a telecine and a motion picture film scanner. This device is able to transfer 16mm and 35mm motion picture film to NTSC or PAL television standards or one of many High-definition television standards. With the data transfer option a Spirit DataCine can output DPX data files. The image pick up device is a solid state charge-coupled device. This eliminated the need for glass vacuum tube CRTs used on older telecines. The units can transfer negative film, primetime, intermediate film and print film, stock. One option is a Super 8 gate for the transfer of Super 8 mm film. With a sound pick up option, optical 16mm and 35mm sound can be reproduced, also 16mm magnetic strip sound. The unit can operate stand alone or be controlled by a scene by scene color corrector. Ken Burns created The Civil War, a short documentary film included in the DVD release, on how he used the Spirit DataCine to transfer and remaster this film. The operator of the unit is called a Colorist or Colorist Assistant. The Spirit DataCine has become the standard for high-end real-time film transfer and scanning. Over 370 units are used in post-production facilities around the world. Most current film productions are transferred on Spirit DataCines for Television, Digital television, Cable television, Satellite television, Direct-to-video, DVD, Blu-ray Disc, pay-per-view, In-flight entertainment, Stock footage, Dailies, Film preservation, digital intermediate and digital cinema. The Spirit DataCine is made by DFT Digital Film Technology GmbH in Darmstadt, Germany.

Electronovision was a process used by producer and entrepreneur H. William "Bill" Sargent, Jr. to produce a handful of motion pictures, theatrical plays, and specials in the 1960s and early 1970s using a high-resolution videotape process for production, later transferred to film via kinescope for theatrical release.

This glossary defines terms that are used in the document "Defining Video Quality Requirements: A Guide for Public Safety", developed by the Video Quality in Public Safety (VQIPS) Working Group. It contains terminology and explanations of concepts relevant to the video industry. The purpose of the glossary is to inform the reader of commonly used vocabulary terms in the video domain. This glossary was compiled from various industry sources.

Link Electronics Ltd. was a major UK industrial and broadcast television equipment manufacturer and systems integrator in the 1970s and 1980s. The company was founded by John Tanner and David Mann, who began manufacturing television cameras in 1966.

The four-tube television camera, intended for color television studio use, was first developed by RCA in the early 1960s. In this camera, in addition to the usual complement of three tubes for the red, green and blue images, a fourth tube was included to provide luminance detail of a scene. With such a camera, a sharp black and white picture was always assured, as it was not necessary to combine signals from the three colour tubes to provide the luminance detail.

References

  1. "HD Time Machine". HD Camera Guide. Archived from the original on 30 October 2014. Retrieved 22 September 2014.
  2. "RCA TV Camera Section". The Broadcast Archive. Retrieved 22 September 2014.
  3. "Thomson TTV1602 Microcam". Museum of the Broadcast Television Camera. Retrieved 22 September 2014.
  4. "link to MK IV". chalkhillmedia.org.
  5. "The Knacker's Yard - Studio". www.meldrum.co.uk.
  6. Abramson, Albert (2 June 2018). The History of Television, 1942 to 2000. McFarland. ISBN   9780786412204 via Google Books.

Bibliography